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Motivation

Why study entanglement in many body physics?

I Understanding correlations is hard: one needs non-local
quantities in order to fully get what is happening in the
system

I Strictly related topic: efficiency of numerical methods
based on matrix-product states (often numerics is the
most reliable way for extracting theoretical information
from quantum Hamiltonians)

I Most studied entanglement witnesses: Rényi
entanglement entropies:

Sn(A) =
1

1− n
TrAρ

n
A

ρA: reduced density matrix of subsystem A

I As n→ 1: von Neumann entanglement entropy
S = −TrA [ρA ln ρA]
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Rényi entropies and CFT
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Rényi entropies and CFT

I Seminal result [Holzhey et al. ’94]: logarithmic violation
of the area law: for a finite interval in an infinite 1D
chain,

S =
c

3
ln l

I Generalizations at finite size, PBC/FBC and generic n
[Calabrese & Cardy ’04]:

Sn =
c

6η

(
1 +

1

n

)
ln

[
ηL

π
sin

πl

L

]
with η = 1, 2 for PBC/OBC

I These results were checked numerically in a plenty of
models, and constitute now the easiest way of
extracting c from simulations
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Rényi entropies and CFT: computation (I)

I ρnA = ρA × ρA × · · · × ρA︸ ︷︷ ︸
n

I Replica trick: computing ρnA is equiva-
lent to computing the reduced density
matrix on a particular Riemann mani-
fold Rn

I Taking the trace (i.e., computing the
n-th Rényi entropy) amounts to sew to-
gether the last and the first sheet
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n-th Rényi entropy) amounts to sew to-
gether the last and the first sheet



Entanglement
entropies in

conformal systems
with boundaries

L. Taddia

Introduction
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Rényi entropies of
excited states

Analitical results

Boundary CFT

Entanglement
entropies and BCFT

Numerical tests

Ising chain

XX chain

Conclusions and
outlook

Rényi entropies and CFT: computation (II)

I If the system is conformal invariant, the space time can
be mapped to simpler geometries by means of
appropriate conformal transformations (operators also
transform according to them)

I For the ground state, TrρnA is seen to behave, under
conformal transformations, as a two-point function of
primary-like operators (twist fields: see, e.g.,
[Castro-Alvaredo & Doyon ’09]) of conformal
dimensions depending on n → log violation of the area
law
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Rényi entropies of excited states (I)
I What happens when consider an excited state? [Alcaraz

et al. ’11, Berganza et al. ’12]

I CFT picture: in radial quantization:∣∣h, h̄〉 = lim
z,z̄→0

Υ† (z , z̄) |0〉

Υ: primary field of conformal dimensions h, h̄

I Replica manifold for a closed finite sys-
tem: Υ has to be placed at t = ±∞
on each sheet

I The excess entropy wrt the GS,

F
(n)
Υ (x) ≡ TrρnA,Υ/TrρnA,I, takes the form

F
(n)
Υ (x) = lim

wk→−i∞

〈∏n−1
k=0 Υ (wk , w̄k) Υ† (−wk ,−w̄k)

〉
Rn

〈Υ (w0, w̄0) Υ† (−w0,−w̄0)〉nR1



Entanglement
entropies in

conformal systems
with boundaries

L. Taddia

Introduction
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Rényi entropies of excited states (I)
I What happens when consider an excited state? [Alcaraz

et al. ’11, Berganza et al. ’12]
I CFT picture: in radial quantization:∣∣h, h̄〉 = lim

z,z̄→0
Υ† (z , z̄) |0〉

Υ: primary field of conformal dimensions h, h̄

I Replica manifold for a closed finite sys-
tem: Υ has to be placed at t = ±∞
on each sheet

I The excess entropy wrt the GS,

F
(n)
Υ (x) ≡ TrρnA,Υ/TrρnA,I, takes the form

F
(n)
Υ (x) = lim

wk→−i∞

〈∏n−1
k=0 Υ (wk , w̄k) Υ† (−wk ,−w̄k)

〉
Rn

〈Υ (w0, w̄0) Υ† (−w0,−w̄0)〉nR1



Entanglement
entropies in

conformal systems
with boundaries

L. Taddia

Introduction
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Rényi entropies of excited states (II)
I Conformal transformations: the replica manifold is

mapped to C

I The operators are placed at z±n,k = exp
[
iπ
n (±x + 2k)

]
,

with x ≡ l
L

I The excess entropy is now

F
(n)
Υ (x) = n−2n(h+h̄)

〈∏n−1
k=0 Υ

(
z+
n,k , z̄

+
n,k

)
Υ†
(
z−n,k , z̄

−
n,k

)〉
〈

Υ
(
z+

1,0, z̄
+
1,0

)
Υ†
(
z−1,0, z̄

−
1,0

)〉n
where the correlators are on C
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Rényi entropies of
excited states

Analitical results

Boundary CFT

Entanglement
entropies and BCFT

Numerical tests

Ising chain

XX chain

Conclusions and
outlook

Question: what happens when one considers open systems?

Can one generalize the Calabrese-Cardy formula to excited
states or different kind of boundary conditions?
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Boundary conformal field theory

I General questions: how boundaries affect conformal
properties? Do boundary conditions preserving
conformal invariance exist?

I Answer [Cardy ’89]: for rational theories, they exist and
they are in one-to-one correspondence to the primary
fields of the theory

I In general, the partition function of a rational model is
given by Z =

∑
h,h̄Mh,h̄ × χh × χh̄, Mh,h̄: multiplicity

of the Verma module h ⊗ h̄

I Boundaries reduce the operator content of the theory:
just one chirality survives, and

Zαβ =
∑
h

N h
αβχh

N : fusion coefficients → correspondence between
boundary conditions and primary fields
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Entanglement entropies and boundary CFT (I)
I Consequence: the GS of a system with boundary

conditions α, β is obtained from the GS with free BC
(FBC) by applying on it a chiral primary operator Υ
(see also H. Saleur’s talk)

I What we have now is a formula very similar to the PBC
one for a primary excited state:

F
(n)
Υ (A) = lim

wk→−i∞

〈∏n−1
k=0 Υ(wk)Υ†(−wk)

〉
Rn

〈Υ(w0)Υ†(−w0)〉nR1

I Difference: the inserted operator is chiral!

I Rn is the replica manifold,
where each Riemann sheet
is now given by an infinite
strip
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Entanglement entropies and boundary CFT (II)

I F can be simplified by means of the conformal
transformations (Rn → Dn → D)

w →
sin π(w−l)

2L

sin π(w+l)
2L

→ z =

[
sin π(w−l)

2L

sin π(w+l)
2L

] 1
n

I The operators are now placed on the boundary of the
disk, at z±n,k
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Entanglement entropies and boundary CFT (III)

I Correlators on the disk become then correlators on C:

F
(n)
Υ (A) =

e i2π(n−1)h

n2nh

〈∏n−1
k=0 Υ(z−n,k)Υ†(z+

n,k)
〉

〈
Υ0(z−1,0)Υ†0(z+

1,0)
〉n

I In principle, we have a recipe to compute corrections!
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Rényi entropies and
CFT
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Critical Ising chain (I)

I Spin-1/2 Ising chain:

H = −1

2

L−1∑
j=1

σxj σ
x
j+1 + h

L∑
j=1

σzj



I Critical for h = 1

I Effective low-energy description: c = 1/2 minimal CFT

I Primary fields: I (h = 0), σ (h = 1
16 ), χ (h = 1

2 )
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Rényi entropies and
CFT
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Rényi entropies and
CFT
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Critical Ising chain (II)
I Conformal boundary conditions: + (0), − ( 1

2 ) and F
( 1

16 ), corresponding to fixing σx to +1/2, −1/2 or
letting it free at the boundary [Cardy ’86, Zhou et al.
’06]

I Fusion coefficients:

N h =
0

1/16
1/2

 δh0 δh1/16 δh1/2

0 δh0 + δh1/2 δh1/16

0 0 δh0


0 1/16 1/2

I Example: Z1/16,1/16 = Z00 = χ0 + χ1/2 → the GS
should get no corrections, while the first excited should
originate from the primary χ

I All the needed correlation functions for the c = 1/2
minimal CFT are known [Ardonne and Sierra ’10,
Berganza et al. ’12, Essler et al. ’13] (see also F.
Essler’s talk)
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Rényi entropies and
CFT
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Critical Ising chain: numerics (I)
I For the FF case: free-fermions techniques [Vidal et al.

’03, Peschel ’03]
I In all other cases: DMRG simulations (thanks to Fabio

Ortolani for providing the code)

I + and −BC can be implemented exactly with DMRG,
by adding “ghost” sites at the edges

I CFT: F
(2)
σ = cos πx4 ,

limn→1
1

1−n lnF
(n)
χ (x) =

ln |2 sin(πx)| + ψ
(

1
2 sin(πx)

)
+

sin(πx)
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Critical Ising chain: numerics (II)
Observations:

I Convergence to the CFT prediction increasing L, as
confirmed by a FSS analysis: strong finite-size effect
(see also [Igloi and Juhász ’08])
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I Only thing we cannot predict: constant (and completely
known) boundary entropies (BE’s) [Affleck and Ludwig
’91]: we add them to the CFT predictions

I In any considered case, excellent agreement between
CFT and numerics
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XX chain (I)
I BC cannot be implemented “exactly” with DMRG, and

one has to consider the modified Hamiltonian [Bilstein
’00]:

H =−
L−1∑
j=1

(
σxj σ

x
j+1 + σyj σ

y
j+1

)
+

−1

2
(α−σ

−
1 + α+σ

+
1 + αzσ

z
1 + β−σ

−
L + β+σ

+
L + βzσ

z
L),

I Effective low-energy description: c = 1 CFT:
compactified free massless boson

I From theory: possible conformal BC: Dirichlet (D) and
Neumann (N)

I Lattice realization of conformal BC: D is realized by
setting all boundary couplings to 0, N (on the left edge)
by, e.g., α−, α+ 6= 0
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Rényi entropies of
excited states

Analitical results

Boundary CFT

Entanglement
entropies and BCFT

Numerical tests

Ising chain

XX chain

Conclusions and
outlook

The spin-1
2 XX chain (II)

I Partition functions:

ZDD(q) =K0(q) + K2(q) = q−
1

24

[
1 + 2q

1
2 + q + O(q2)

]
ZNN(q) =K0(q) = q−

1
24
[
1 + q + O(q2)

]
ZND(q) =χ 1

16
(q)
[
χ0(q) + χ 1

2
(q)
]

Kj , j = 0, 1, 2, 3 mod 4: characters of the c = 1 CFT
(with unit compactification radius) [Saleur ’98]

I The operator content of the theories is, even in this
case, under control

I Even in this case, the needed correlators are known



Entanglement
entropies in

conformal systems
with boundaries

L. Taddia

Introduction
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Rényi entropies of
excited states

Analitical results

Boundary CFT

Entanglement
entropies and BCFT

Numerical tests

Ising chain

XX chain

Conclusions and
outlook

The spin-1
2 XX chain (II)

I Partition functions:

ZDD(q) =K0(q) + K2(q) = q−
1

24

[
1 + 2q

1
2 + q + O(q2)

]
ZNN(q) =K0(q) = q−

1
24
[
1 + q + O(q2)

]
ZND(q) =χ 1

16
(q)
[
χ0(q) + χ 1

2
(q)
]

Kj , j = 0, 1, 2, 3 mod 4: characters of the c = 1 CFT
(with unit compactification radius) [Saleur ’98]

I The operator content of the theories is, even in this
case, under control

I Even in this case, the needed correlators are known



Entanglement
entropies in

conformal systems
with boundaries

L. Taddia

Introduction
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XX chain: numerics (I)

I DD case: free-fermions techniques; remaining cases:
DMRG
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Everything can be under-
stood by means of σ and
i∂φ correlators
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I DD case: free-fermions techniques; remaining cases:
DMRG

0 0.2 0.4 0.6 0.8 1

x
0

0.2

0.4

0.6

0.8

1

(S
ph,DD

-S
GS,DD

)(l,100)/ln2
Numerical
CFT

(a)

0 0.2 0.4 0.6 0.8 1

x

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

(S
2,ND

-S
2,DD

)(l,L)/ln2

DMRG
CFT

(b)

0 0.2 0.4 0.6 0.8 1

x
-0.6

-0.4

-0.2

0

0.2

(S
2,ND,exc

-S
2,DD,GS

)(l,100)/ln2

DMRG
CFT(b)

Everything can be under-
stood by means of σ and
i∂φ correlators



Entanglement
entropies in

conformal systems
with boundaries

L. Taddia

Introduction

Rényi entropies and
CFT
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XX chain: numerics (II)

Observations:

I Different lattice/finite-size effect with respect to the
c = 1/2 case: strong parity oscillations, typical of c = 1
systems [Laflorencie et al. ’06, Calabrese et al. ’10,
Dalmonte, Ercolessi & LT ’11, ’12]

I No need of FSS here: nice agreement between numerics
and CFT predictions, in any considered case, due to the
oscillating nature of the corrections

I Even in this case, BE’s were added to the CFT
prediction when necessary

I Excellent agreement in any considered case



Entanglement
entropies in

conformal systems
with boundaries

L. Taddia

Introduction
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Rényi entropies of
excited states

Analitical results

Boundary CFT

Entanglement
entropies and BCFT

Numerical tests

Ising chain

XX chain

Conclusions and
outlook

XX chain: numerics (II)

Observations:

I Different lattice/finite-size effect with respect to the
c = 1/2 case: strong parity oscillations, typical of c = 1
systems [Laflorencie et al. ’06, Calabrese et al. ’10,
Dalmonte, Ercolessi & LT ’11, ’12]

I No need of FSS here: nice agreement between numerics
and CFT predictions, in any considered case, due to the
oscillating nature of the corrections

I Even in this case, BE’s were added to the CFT
prediction when necessary

I Excellent agreement in any considered case



Entanglement
entropies in

conformal systems
with boundaries

L. Taddia

Introduction
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Conclusions and outlook

I Starting from the results for excess entropies of excited
states, we derived a CFT master formula for the excess
entropies in the open cases

I Starting from it, computations are straightforward once
one knows how to compute n-point primary correlations

I We tested the CFT predictions against 1D lattice
models, showing excellent agreement between field
theory and numerics

I Message: boundaries reduce the operator content of
CFT → open models are advantageous playgrounds for
the testing of CFT predictions

I Example of possible open issue: deriving the form of the
corrections for a generic descendant state in CFT (work
in progress!) and of the oscillating corrections
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Thank you for the attention!
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