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We report the creation of Greenberger-Horne-Zeilinger states with up to 14 qubits. By investigating the

coherence of up to 8 ions over time, we observe a decay proportional to the square of the number of qubits.

The observed decay agrees with a theoretical model which assumes a system affected by correlated,

Gaussian phase noise. This model holds for the majority of current experimental systems developed

towards quantum computation and quantum metrology.
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Quantum states can show nonclassical properties; for
example, their superposition allows for (classically) coun-
terintuitive situations such as a particle being in two places
at the same time. Entanglement can extend this paradox
even further; e.g., the state of one subsystem can be
affected by a measurement on another subsystem without
any apparent interaction [1]. These concepts, although
experimentally frequently verified, contrast with our clas-
sical perception and lead to several questions. Is there a
transition from a quantum to a classical regime? Under
which conditions does that transition take place? And
why? The creation of large-scale multiparticle entangled
quantum states and the investigation of their decay towards
classicality may provide a better understanding of this
transition [2–5].

Usually, decoherence mechanisms are used to describe
the evolution of a quantum system into the classical regime.
One prominent example is the spontaneous decay of the
excited state of an atom. In a collection of atoms, the decay
of each would be expected to be independent of the others.
Therefore, the number of decay processes in a fixed time
window would intuitively be proportional to the number of
excited atoms. This assumption, however, can be inaccu-
rate. Decoherence effects can act collectively and produce
‘‘superradiance,’’ a regime in which the rate of spontaneous
decay is proportional to the square of the number of excited
atoms [6]. Such collective decoherence can also occur in
multiqubit registers, an effect known as ‘‘superdecoher-
ence’’ [7]. This particularly applies to most currently used
qubits which are encoded in energetically nondegenerate
states. In these systems, a phase reference (PR) is required
to perform coherent operations on a quantum register. Noise
in this PR thus collectively affects the quantum register.

In the following we introduce a model describing a
quantum register in the presence of correlated phase

noise. More specifically, we investigate N-qubit
Greenberger-Horne-Zeilinger (GHZ) states of the form
jc ð0Þi ¼ 1ffiffi

2
p ðj0 . . . 0iþ j1 . . . 1iÞ. These states are the ar-

chetype of multiparticle entanglement and play an impor-
tant role in the field of quantum metrology [8] for
quantum-mechanically enhanced sensors. This special
quantum state, however, has only been generated with up
to 6 particles so far [9,10]. Employing up to 8 genuinely
multi-particle-entangled ion qubits in a GHZ state, we
predict and verify the presence of superdecoherence
which scales quadratically with the number of qubits N.
In general, any system experiencing correlated phase noise
is affected by this accelerated GHZ-state decoherence.
We model collective phase fluctuations acting on the

quantum register with a Hamiltonian of the form Hnoise ¼
!EðtÞ
2

PN
k¼1 !

ðkÞ
z where !EðtÞ denotes the strength of the

fluctuations, and !ðkÞ
z a phase flip on the kth ion. Under

this Hamiltonian, the initial state of the system jc ð0Þi
evolves into jc ðtÞi ¼ expð% i@ Rt

0 d"Hnoiseð"ÞÞjc ð0Þi.
As a measure of state preservation, we use the fidelity

FðtÞ ¼ jhc ð0Þjc ðtÞij2, where the bar refers to an average
over all realizations of random phase fluctuations. The
decay of this fidelity can be conveniently described by

FðtÞ ¼ 1

2
f1þ exp½%2#ðN; tÞ'g;

where the effective error probability for a stationary
Gaussian random process is derived to be

#ðN; tÞ ¼ N2 1

2@2 Z t

0
d"ðt% "Þ!Eð"Þ!Eð0Þ: (1)

Since bosonic systems have purely Gaussian fluctuations,
a similar result is found within the spin-boson model [7].
The intuition of an error probability can be recovered in
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N = 14 : texp > 300 days,
N = 36 : texp > age of the universe.

examples:
,

N = 8 : texp ≈ 10h , H. Häffner et al., Nature 438, 643 (2005).
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Let

&

l, r ∈ N, 2 ≤ l + r ≤ N − 2 and define the linear maps:

k + 1k N

L R

If with respect to any cut it holds that

than fulfills the invertibility condition. �̂

rank
�
E{k+1,...,k+r}

{k−l+1,...,k}
�
= rank

�
E{k+1,...,N}

{1,...,k}
�

The Invertibility condition:

1



Assume that there is a   such that for all                                   r
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�d2
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Mixed states:
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�

Let   satisfy the invertibility condition and           . Then, for all �̂ l = r = 1

there is acuts and all X̂k+1 ⊗ X̂k+2 Ŷk+1 such that
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.



X̂1

State TomographyEfficient 

NN − 2 N − 1
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NN − 1

Ô = . . .Ŷ3X̂1 X̂2

2 3 4

tr[�̂Ô]Compute expectation value:

1

MPO representation: �̂ =
�

l1,...,lN

P̂ (l1)
1 ⊗ · · ·⊗ P̂ (lN )

N

B1[l1] · · ·BN [lN ]=

tr
�
�̂ P̂ (l1)

1 ⊗ . . .⊗ P̂ (lN )
N

�
= E1(P̂

(l1)
1 ,E2(. . .EN−1(P̂

(lN−1)
N−1 , P̂ (lN )

N )))

Efficient way to compute expectation values: Choose complete basis.
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W state: |WN=8(φ)� =
�
|00 . . . 01�+ eiφ1 |00 . . . 10�+ . . .+ eiφN−1 |10 . . . 00�

�
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Efficient tomography via direct
MPO reconstruction:
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Full tomography via maximum
likelihood: 3N settings.
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# 972

# 162

# 6561

H. Häffner et al., Nature 438, 643 (2005).

String of         trapped ions:
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fR=3
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fR=5
opt = 0.718

fML
opt = 0.722

Determine maximal fidelity with 
respect to a W state:
fopt = argmax

φ
[�WN (φ)|�̂|WN (φ)�]



Ising Hamiltonian:

Ĥ = −J

N−1�

i=1

σ̂(X)
i ⊗ σ̂(X)

i −B

N�

i=1

σ̂(Z)
i

pk = tr
�
�̂P̂k

�
+ σ

Consider thermal states:
�̂ = e−βĤ /Z

Data prone to noise:

Gaussian, zero mean.

3

i.e., by all reductions to R = r + l + 1 contiguous sites.
By choosing the X̂i to be the basis operators P̂αi

i , this
implies that (l, r)-invertible operators Ô may be fully re-
constructed from their reductions to R consecutive sites,
which is the same as knowing the expectation values

tr[P̂αk
k · · · P̂αk+R−1

k+R−1 Ô], αi = 1, . . . , d2, (8)

for all k = 1, . . . , N −R+ 1.
One can prove that a vast majority of matrix product

operators fulfil the invertibility condition; i.e., a vast ma-
jority of matrix product operators may be reconstructed
from local reductions alone (see Sec. B of the Appendix
for a technical proof). As noted above, practically rel-
evant states are (well approximated by) matrix product
operators of low dimension; i.e., we expect the scheme to
work for a large class of mixed states. Now, of course, ex-
perimentally, the exact expectation values even for states
satisfying the invertibility condition are only known to
within a certain statistical error (e.g., the estimated stan-
dard deviation of the mean after a finite number of mea-
surements). This error propagates into the singular val-

ues of the map E{k,...,k+r−1}
{k−l,...,k−1} . As this map needs to be

inverted, even small errors on singular values close to zero
will lead to a large error in the reconstruction. This issue
may be avoided by using stochastic robust approximation
techniques [16–18] (see Sec. C of the Appendix for techni-
cal details). Before we apply the reconstruction scheme
to experimental data, we present numerical results for
states that do not necessarily fulfil the invertibility con-
dition and for which the local expectation values are sub-
ject to inevitable statistical noise.

We restrict our attention to qubits d = 2, and illus-
trate the behaviour of the tomography scheme for ther-
mal states of the Ising Hamiltonian at its quantum crit-
ical point

Ĥ = −
N−1�

i=1

σ̂x
i σ̂

x
i+1 −

N�

i=1

σ̂z
i . (9)

We obtain the thermal states by an imaginary time evo-
lution [19, 20] using the time evolving block decima-
tion algorithm (TEBD). We simulate the measurements
in the following way. We first compute the exact lo-

cal expectation values pkα1,...,αR
= �σ̂(α1)

k · · · σ̂(αR)
k+R−1��̂,

αi = 0, x, y, z, for all k. Statistical noise is then simu-
lated by adding random numbers (drawn from a Gaus-
sian distribution with zero mean and standard deviation
σ) to them. The resulting p̄kα1,...,αR

then serve as the
input to our reconstruction scheme. We compare the
reconstructed state �̂rec to the exact state �̂ by com-
puting the Hilbert-Schmidt norm difference D (�̂, �̂rec) =
��̂rec − �̂�2/��̂�2. To obtain meaningful results, we have
rescaled the norm such that the deviations are measured
in units of ��̂�2, the natural length scale of the state to
be learned. In Fig. 2, we show the norm difference for the
exact and the reconstructed states as a function of the
system size N and the error σ. It indicates that, for given
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FIG. 2: Quality of our reconstruction scheme for thermal

states of the Ising Hamiltonian in Eq. (9) for β = 5 and

R = 5, i.e., the state is reconstructed from local expectation

values on five consecutive sites. For each pair (N,σ), the plot

shows the mean of the norm difference obtained from 100 re-

alizations and renormalized by the purity of the exact state,

i.e. D (�̂, �̂rec) = ��̂rec − �̂�2/��̂�2. This corresponds to 100

experiments, each of which carries an uncertainty of σ about

the local expectation values.

N , the error D (�̂, �̂rec) scales roughly as σ; similarly, for
given σ, it scales roughly asN . In Sec. D of the Appendix
we provide further numerical experiments analysing the
performance of the algorithm for thermal states of ran-
dom next-neighbour Hamiltonians and mixed states ob-
tained by tracing out parts of a matrix product state in a
larger Hilbert space. Again, these numerical results sug-
gest that the scaling of our scheme is polynomial in both
N and σ.
Let us finally apply the reconstruction scheme to ex-

perimental data obtained in an ion trap experiment in a
full quantum state tomography setting. The considered
state is a W state implemented on N = 8 qubits with
local phases [2], i.e.,

|W (φ)� =
�
|0 . . . 001�+ eiφ1 |0 . . . 010�+

+ . . .+ eiφN−1 |1 . . . 000�
�
/
√
N.

(10)

The available experimental data are the set of relative
frequencies corresponding to 100 measurements in each
of the 3N different basis rotations (measurements along
the X, Y , and Z directions). From these, we obtain max-
imum likelihood estimates to the reduced density matri-
ces on all blocks of R sites [21]. As described in the
Appendix, we apply a stochastic robust approximation
technique to avoid difficulties in ill-conditioned inversion
problems making use of the Fisher information matrix
of the local estimates [21]. Let us stress that the input
to the reconstruction scheme are merely the relative fre-
quencies corresponding to the measurements on all sub-
systems of R contiguous sites and the total number of
measurements. Absolute values of the reconstructed den-
sity matrices for R = 3 and R = 5 along with the maxi-
mum likelihood estimate obtained in the full tomography
procedure [2] are presented in Fig. 3. Comparing the

D
(�̂
,�̂

re
c
)

D(�̂, �̂rec) = ��̂− �̂rec�2F /��̂�2F
J = 1
B = 1/2

Direct MPO tomography 
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