Efficient State Tomography WITH
 Matrix Product Structures

T. Baumgratz
D. Gross, M. Cramer, and M.B. Plenio London, 2nd of June 2014

Efficient State Tomography

$$
\begin{aligned}
& \text { Measurements: } \\
& p_{k}=\operatorname{tr}\left[\hat{\Pi}_{k} \hat{\varrho}\right]
\end{aligned}
$$

Reconstruct density matrix:

$$
\hat{\varrho}=\frac{\mathbb{1}}{2}+\sum_{i=1}^{3} \frac{\left\langle\hat{\sigma}_{i}\right\rangle}{2} \hat{\sigma}_{i}
$$

Techniques:
Linear inversion, Maximum Likelihood, Mean Bayesian estimation, ...

Efficient State Tomography

$$
\begin{aligned}
& \text { Measurements: } \\
& p_{k}=\operatorname{tr}\left[\hat{\Pi}_{k} \hat{\varrho}\right], k=1, \ldots, d^{2 N}
\end{aligned}
$$

Reconstruct density matrix:
$\hat{\varrho} \in \mathbb{C}^{d^{N} \times d^{N}}$

Exponential growth of Hilbert space dimension with the number of subsystems!
Experiment time

Efficient State Tomography

Exponential growth of Hilbert space dimension with the number of subsystems!

Experiment time, examples:
$N=8: \quad t_{e x p} \approx 10 h$, ,H.Hathere etal., Nature 438,643 (20055.,
$N=14: t_{e x p}>300$ days,
$N=36: t_{\text {exp }}>$ age of the universe.
Post-processing

resources

week ending 1 APRIL 2011

14-Qubit Entanglement: Creation and Coherence

Thomas Monz, ${ }^{1}$ Philipp Schindler, ${ }^{1}$ Julio T. Barreiro, ${ }^{1}$ Michael Chwalla, ${ }^{1}$ Daniel Nigg, ${ }^{1}$ William A. Coish, ${ }^{2,3}$
Maximilian Harlander, ${ }^{1}$ Wolfgang Hänsel, ${ }^{4}$ Markus Hennrich, ${ }^{1, *}$ and Rainer Blatt ${ }^{1,4}$
${ }^{1}$ Institut für Experimentalphysik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria
${ }^{2}$ Institute for Quantum Computing and Department of Physics and Astronomy, University of Waterloo,

EFFICTENT)STATE TOMOGRAPHY

Exponential growth of Hilbert space dimension with the number of subsystems!
Experiment time

- Problems -

Post-processing resources

Reduce the number of measurements.
Choose efficient state representations.

Measure reduced density matrices:

$$
\hat{\varrho}_{k, k+1, k+2}=\operatorname{tr}_{\backslash\{k, k+1, k+2\}}[\hat{\varrho}]
$$

Matrix product operator:

$$
\hat{\varrho}=\sum_{i_{1}, \ldots, i_{N}} B_{1}\left[i_{1}\right] \cdots B_{N}\left[i_{N}\right] \hat{P}_{1}^{\left(i_{1}\right)} \otimes \cdots \otimes \hat{P}_{N}^{\left(i_{N}\right)}
$$

Efficient State Tomography

Exponential growth of Hilbert space dimension with the number of subsystems!
Experiment time

- Problems -

Post-processing resources

Reduce the number of measurements.

Measure reduced density matrices:

$$
\hat{\varrho}_{k, k+1, k+2}=\operatorname{tr}_{\backslash\{k, k+1, k+2\}}[\hat{\varrho}]
$$

Choose efficient state representations.
Ground, thermal states of local Hamiltonians, W-state, GHZ-state, ...

Matrix product operator:

$$
\hat{\varrho}=\sum_{i_{1}, \ldots, i_{N}} B_{1}\left[i_{1}\right] \cdots B_{N}\left[i_{N}\right] \hat{P}_{1}^{\left(i_{1}\right)} \otimes \cdots \otimes \hat{P}_{N}^{\left(i_{N}\right)}
$$

EFFICTENT)STATE TOMOGRAPHY

The Invertibility condition:

Let $l, r \in \mathbb{N}, 2 \leq l+r \leq N-2$ and define the linear maps:
$E_{\{k-l+1, \ldots, k\}}^{\{k+1, \ldots, k+r\}}\left(\hat{X}_{\{k+1, \ldots, k+r\}}\right)=\operatorname{tr}_{\{k+1, \ldots, k+r\}}\left[\hat{\varrho}_{\{k-l+1, \ldots, k+r\}} \hat{X}_{\{k+1, \ldots, k+r\}}\right]$
己 $E_{\{1, \ldots, k\}}^{\{k+1, \ldots, N\}}\left(\hat{X}_{\{k+1, \ldots, N\}}\right)=\operatorname{tr}_{\{k+1, \ldots, N\}}\left[\hat{\varrho} \hat{X}_{\{k+1, \ldots, N\}}\right]$
If with respect to any cut it holds that
$\operatorname{rank}\left[E_{\{k-l+1, \ldots, k\}}^{\{k+1, \ldots, k+r\}}\right]=\operatorname{rank}\left[E_{\{1, \ldots, k\}}^{\{k+1, \ldots, N\}}\right]$
than $\hat{\varrho}$ fulfills the invertibility condition.

EFFICTENT)STATE TOMOGRAPHY

Linear growing number of measurements.

Mixed states:

$$
\hat{\varrho}=\sum_{i_{1}, \ldots, i_{N}=1}^{d^{2}} B_{1}\left[i_{1}\right] \cdots B_{N}\left[i_{N}\right] \hat{P}_{1}^{\left(i_{1}\right)} \otimes \cdots \otimes \hat{P}_{N}^{\left(i_{N}\right)}
$$

Assume that there is a r such that for all $k=0, \ldots, N-r-1$ the sets
$\left\{B_{k+1}\left[i_{k+1}\right] \cdots B_{k+r}\left[i_{k+r}\right]\right\}_{i_{k+1}, \ldots, i_{k+r}=1}^{d^{2}}$ $\operatorname{span} \mathbb{C}^{D_{k+1} \times D_{k+r+1}}$ 。
aka injective MPO.

$\hat{\varrho}$ satisfies the invertibility condition.

$\hat{\varrho}$ is uniquely determined by its reduced density matrices on $2 r+1$ sites.

Pure states:

$|\psi\rangle=\sum_{i_{1}, \ldots, i_{N}=1}^{d} A_{1}\left[i_{1}\right] \cdots A_{N}\left[i_{N}\right]\left|i_{1}, \ldots, i_{N}\right\rangle$
Assume that there is a r such that for all $k=0, \ldots, N-r-1$ the sets
$\left\{A_{k+1}\left[i_{k+1}\right] \cdots A_{k+r}\left[i_{k+r}\right]\right\}_{i_{k+1}, \ldots, i_{k+r}=1}^{d}$ $\operatorname{span} \mathbb{C}^{D_{k+1} \times D_{k+r+1}}$.
aka injective MPS.

$|\psi\rangle$ is the unique ground state of a local Hamiltonian.

$|\psi\rangle$ is uniquely determined by its reduced density matrices on $r+1$ sites.

EfFICIENTSTATE TOMOGRAPHY

Exponential growth of Hilbert space dimension with the number of subsystems!

Experiment time

- Problems -

Post-processing resources

Reduce the number of measurements.

$\sqrt{8}$Injective matrix product states and operators are uniquely specified locally.

Measure reduced density matrices:
$\hat{\varrho}_{k, k+1, k+2}=\operatorname{tr}_{\backslash\{k, k+1, k+2\}}[\hat{\varrho}]$

Choose efficient state representations.
Ground, thermal states of local Hamiltonians, W-state, GHZ-state, ...

Matrix product operator:

$$
\hat{\varrho}=\sum_{i_{1}, \ldots, i_{N}} B_{1}\left[i_{1}\right] \cdots B_{N}\left[i_{N}\right] \hat{P}_{1}^{\left(i_{1}\right)} \otimes \cdots \otimes \hat{P}_{N}^{\left(i_{N}\right)}
$$

Efficient State Tomography

Compute expectation value: $\operatorname{tr}[\hat{\varrho} \hat{O}]$

Let $\hat{\varrho}$ satisfy the invertibility condition and $l=r=1$. Then, for all cuts and all $\hat{X}_{k+1} \otimes \hat{X}_{k+2}$ there is a \hat{Y}_{k+1} such that

$$
\operatorname{tr}_{k+1}\left[\hat{\varrho}_{k, k+1} \hat{Y}_{k+1}\right]=\operatorname{tr}_{k+1, k+2}\left[\hat{\varrho}_{k, k+1, k+2} \hat{X}_{k+1} \otimes \hat{X}_{k+2}\right] .
$$

Efficient State Tomography

Compute expectation value: $\operatorname{tr}[\hat{\varrho} \hat{O}]$

Let $\hat{\varrho}$ satisfy the invertibility condition and $l=r=1$. Then, for all cuts and all $\hat{X}_{k+1} \otimes \hat{X}_{k+2}$ there is a \hat{Y}_{k+1} such that

$$
\operatorname{tr}_{k+1}\left[\hat{\varrho}_{k, k+1} \hat{Y}_{k+1}\right]=\operatorname{tr}_{k+1, k+2}\left[\hat{\varrho}_{k, k+1, k+2} \hat{X}_{k+1} \otimes \hat{X}_{k+2}\right] .
$$

EfFiCIENTSTATE TOMOGRAPHY

Compute expectation value: $\operatorname{tr}[\hat{\varrho} \hat{O}]$

Let $\hat{\varrho}$ satisfy the invertibility condition and $l=r=1$. Then, for all cuts and all $\hat{X}_{k+1} \otimes \hat{X}_{k+2}$ there is a \hat{Y}_{k+1} such that $\operatorname{tr}_{k+1}\left[\hat{\varrho}_{k, k+1} \hat{Y}_{k+1}\right]=\operatorname{tr}_{k+1, k+2}\left[\hat{\varrho}_{k, k+1, k+2} \hat{X}_{k+1} \otimes \hat{X}_{k+2}\right]$.

EFFICIENT STATE TOMOGRAPHY

Compute expectation value: $\operatorname{tr}[\hat{\varrho} \hat{O}]$

Let $\hat{\varrho}$ satisfy the invertibility condition and $l=r=1$. Then, for all cuts and all $\hat{X}_{k+1} \otimes \hat{X}_{k+2}$ there is a \hat{Y}_{k+1} such that $\operatorname{tr}_{k+1}\left[\hat{\varrho}_{k, k+1} \hat{Y}_{k+1}\right]=\operatorname{tr}_{k+1, k+2}\left[\hat{\varrho}_{k, k+1, k+2} \hat{X}_{k+1} \otimes \hat{X}_{k+2}\right]$.

Efficient State Tomography

Compute expectation value: $\operatorname{tr}[\hat{\varrho} \hat{O}]$

Efficient way to compute expectation values: Choose complete basis.
$\operatorname{tr}\left[\hat{\varrho} \hat{P}_{1}^{\left(l_{1}\right)} \otimes \ldots \otimes \hat{P}_{N}^{\left(l_{N}\right)}\right]=\mathbb{E}_{1}\left(\hat{P}_{1}^{\left(l_{1}\right)}, \mathbb{E}_{2}\left(\ldots \mathbb{E}_{N-1}\left(\hat{P}_{N-1}^{\left(l_{N-1}\right)}, \hat{P}_{N}^{\left(l_{N}\right)}\right)\right)\right)$

$$
=B_{1}\left[l_{1}\right] \cdots B_{N}\left[l_{N}\right]
$$

MPO representation: $\hat{\varrho}=\sum_{l_{1}, \ldots, l_{N}} B_{1}\left[l_{1}\right] \cdots B_{N}\left[\dot{l_{N}}\right] \hat{P}_{1}^{\left(l_{1}\right)} \otimes \cdots \otimes \hat{P}_{N}^{\left(l_{N}\right)}$

EfFICIENTSTATE TOMOGRAPHY

Exponential growth of Hilbert space dimension with the number of subsystems!

Experiment time

- Problems -

Post-processing resources

Reduce the number of measurements.

Injective matrix product states and operators are uniquely specified locally.

Measure reduced density matrices:

$$
\hat{\varrho}_{k, k+1, k+2}=\operatorname{tr}_{\backslash\{k, k+1, k+2\}}[\hat{\varrho}]
$$

Choose efficient state representations.
Ground, thermal states of local Hamiltonians, W-state, GHZ-state, ...

Matrix product operator:

$$
\hat{\varrho}=\sum_{i_{1}, \ldots, i_{N}} B_{1}\left[i_{1}\right] \cdots B_{N}\left[i_{N}\right] \hat{P}_{1}^{\left(i_{1}\right)} \otimes \cdots \otimes \hat{P}_{N}^{\left(i_{N}\right)}
$$

Efficient State Tomography

W state: $\left|W_{\mathrm{N}=8}(\phi)\right\rangle=\left[|00 \ldots 01\rangle+e^{i \phi_{1}}|00 \ldots 10\rangle+\ldots+e^{i \phi_{N-1}}|10 \ldots 00\rangle\right] / \sqrt{N}$

String of $N=8$ trapped ions:

H. Häffner et al., Nature 438, 643 (2005).

Full tomography via maximum likelihood: 3^{N} settings.
Efficient tomography via direct MPO reconstruction:
$3^{R}(N-R+1)$ settings.
Determine maximal fidelity with respect to a W state:
$\left.f_{\text {opt }}=\underset{\phi}{\operatorname{argmax}}\left[\left\langle W_{N}(\phi)\right| \hat{\varrho}\left|W_{N}(\phi)\right\rangle\right]\right]$

$$
\begin{array}{ll}
f_{\mathrm{opt}}^{\mathrm{ML}}=0.722 & f_{\mathrm{op}}^{R=3}=0.688 \\
& f_{\mathrm{opt}}^{R=5}=0.718
\end{array}
$$

Efficient State Tomography

Using Hamiltonian:

$\hat{H}=-J \sum_{i=1}^{N-1} \hat{\sigma}_{i}^{(X)} \otimes \hat{\sigma}_{i}^{(X)}-B \sum_{i=1}^{N} \hat{\sigma}_{i}^{(Z)}$
Direct MPO tomography
Consider thermal states:

$$
\hat{\varrho}=\mathrm{e}^{-\beta \hat{H}} / Z
$$

Data prone to noise:

$$
p_{k}=\operatorname{tr}\left[\hat{\varrho} \hat{P}_{k}\right]+\sigma
$$

Gaussian, zero mean.
$J=1$
$B=1 / 2$

$$
D\left(\hat{\varrho}, \hat{\varrho}_{\mathrm{rec}}\right)=\left\|\hat{\varrho}-\hat{\varrho}_{\mathrm{rec}}\right\|_{F}^{2} /\|\hat{\varrho}\|_{F}^{2}
$$

Efficient State Tomography WITH Matrix Product Structures

T. Baumgratz

