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Entanglement entropy

Consider a system in a quantum state |y) (p=|yXy])
H=Has®Hp

Alice can measure only in A, while Bob in the remainder B
Alice measures are entangled with Bob's ones: Schmidt deco

V) = ZC,,|W,,>A|\U,,>B cn 2 0, ZC,Z, =1
3 n

e If ci=1 = |y) unentagled
e If ¢; all equal = |y) maximally entangled

A natural measure is the entanglement entropy (p. =Trs p)

SA=-Trpaln pa=-) calnci= 8B



l Entanglement entropy |

If |y) is the ground state of a local Hamiltonian

Area Law
S, Area separating A and B [Srednicki '93]

[f the Hamiltonian has a gap

B A, B
< >
l
In a 1+1 D CFT Holzhey, Larsen, Wilczek *94
Sa= g In¢

This 1s the most effective way to determine the central charge



jPath integral and Riemann surfacesl

_ [PC.Cardy 04
O cuts
(D1(x)|pald2(x)) = ( . O)

X

/ ./ / For » integer, Tr pJ is

the partition function

Ir ,OZ= / 1 / on a n-sheeted

Riemann surface

0
Replica trick: S5 = — Iim1 a—TrpQ\
n— n



Riemann surfaces and CFT l

This Riemann surface is mapped to the plane by

W= f == 2L C—>2_C1/"=>W—>z—(w u>1/n

w—v

Trp's = (7,,(u) 7, (v)) with scaling dimension [A; = — (n - 1)




Entanglement of non-complementary parts |

Sa,ua, gives the entanglement between A and B

The mutual information Sa,+ Sa,-Sa,uA,
gives an upper bound on the entanglement
between A1 and Az
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Entanglement of non-complementary parts

Sa,ua, gives the entanglement between A and B

The mutual information Sa,+ Sa,-Sa,uA,
gives an upper bound on the entanglement
between A1 and Az

What is the entanglement between the two
non-complementary parts A; and Az?

A computable measure of entanglement exists:
the logarithmic negativity [Vidal-Werner 02]



Entanglement negativity I

Let us denote with|e(") and le}”’) two bases in A1 and A2
p is the density matrix of A{UA> , not pure
The partial transpose is

<6(-1)6§—2)|pT2|6(1) (2 )> _ (e(l)

1) (2)
k€l i ()§>

i |ple
And the logarithmic negativity

¢= In|[ p"2 [|= In Tr [p"]

[t measures “how much” the
Io] — - _ . .
Trlp*l = Z‘)‘ = AZN))‘ Z Al eigenvalues of p’2 are negative
because Tr(p’2)=1
& 1s an entanglement monotone (does not decrease under LOCC)

It 1s also additive



A replica approach ’

@ Let us consider traces of integer powers of p’2

r(pt)"e = ZA" > il + D> INl™ ne even
Ai>0 A <0
r(p)"e = Z/\n" = > Xl = > ™ pn, odd
Ai>0 A <0
@ The analytic continuations from 7. and »n, are different
£ = lim InTr(p'2)" lim Tr(p!2) = Trpl2 =
Ne—1 nNo—1
T = dd
® For a pure state p=iy)y| Tr(pyr = 8 =00
(Tr py'")? n = ne even

@ For n. —1, we recover

E=2In Trp;/ ’ Renyi entropy 1/2






j —I;I-egativity and QFT |
Da= / P /

The partial transposition with respect to Az corresponds to
exchange row and column indices in A




j —I;I-egativity and QFT |
Da= / P /

The partial transposition with respect to Az corresponds to
exchange row and column indices in A




Negativity and QFT |

Gluing together » of the above

= (Tn(u1)Tn(v1)Tn(u2) T (v2))

The partial transposition exchanges two twist operators

Tr(pa ,052) 1s the partition function on a Klein bottle



] Pure States in QFT |

T/’L’n: ‘[_/'n\A )
U2 %

Uuj V] 2
T, ‘ T’

n

(T} = (T2 w) T ()

Ti connects the j-th sheet with the (7+2)-th one:

For n=n. even, the R-surface
decouples in two n./2 surface

For n=n, odd, the n,-sheeted

(@) )
surface remains 7,-sheeted



Pure States in CFT |

From Tr(p,)" = (7.} (u2)7;7 (v2)) and

Tr(pl2)" = (T, s2(u2) T, 2(v2)))? = (Trply/?)?
(o)™ = (T, (u2) T, (v2)) = Taply,
3, " . C 1
7, has dimension ATW?O =15 Ny — — the same as 7,
0]

2
7;126 has dimension|Az2 = - (E — —)

lo%1l = lim Tr(p2)" o 05 = € = §1n€+cnst



, Two adjacent intervals I

—_—e— 0 e——
-l; 0 %,

3-point function:
Tr(pp’)" = (Tn(—01) T (0)Tn (£2))




Two disjoint intervals pc coommon:

[Furukawa et al 09]

Prelude: The entanglement entropy [caragiio, Gliozzi 09]

Al As
u—vi \up—v
AL — n ’ . !
lur — vi||u2 — v2|ur — val|u2 — v Apointratio

Fu(x) 1s a calculable function depending on the full operator content

E.g. for Luttinger CFT:

b XX chain 15T XX chain
L—o L—co
1.18 . 4=16 141 ater « £=16
= . 4=32 ot . £=32
F2 v £=64 F3 v £=64
i . £=128 & . £=128
; 13
£ =256 | o « £=256
4=7 s 8=7
£ =21 i £=21
. 1.12F . £ =63 12 |k y £=63
[PC, Fagotti | 1] £=189 o £=189
CFT == GFT




Two disjoint intervalsgegymemon
Prelude: The entanglement entropy e A

Al A>
ui V1 u2 V2
)2 i — ||y — v L R R
Trpa = c | — vi||ue — wol|un — wval|t — w1 Falx) X = Gumuitamw) = 4 7 Pointratio

Fu(x) 1s a calculable function depending on the full operator content

[t admits the universal expansion

)Zj(Aﬂ‘Zj) 7l

(1T ér (€37577))2

j=1

¢ 01/
Trpfh = 2(lap) 507 S <ﬁ
{ki}

Trivial, but important for the following: At n=1 all coefficients are
vanishing, since Tr pa=1



, Two disjoint intervals l

Tr(p,2)" = (Tn(u1)Tn (v1) Tn (u2) T (v2))

Al 7 A O\
Ui Vi nSs\____— W
Tr(p2?)™ o [ila(1 — y)] "7, (y)

Being Trp’y and Tr( pTQ)” related by an exchange of twists:
Gls) = (1= SO D7, (1)

e

E(y) = lim InGyp, (y) = lim In []—'ne (L)]

Ne—1 Nne—1




, Two disjoint intervals l

E(y) = lim InG, (y) = lim In [}‘ne (L)]

ne—)l ne_)].

Consequences:

@ The Negativity 1s a scale invariant quantity!

@ Since F,(y) = >, y*2is,(i), £(y) vanishes in y=0 faster than any
power

@ For u;»v2, y-»1 and we recover the result for adjacent intervals

>4

G)—-c/4In(1-y) times possible log corrections

1.e. the negativity diverges for y —1




Finite Systems |

A finite system of length L with PBC can be obtained mapping
the the plane to the cylinder with the conformal mapping

L
z—w=—Ilogz
2

This has the net effect to replace any length with

/ L ,n7r€
— — sin —
T L

Thus for two adjacent intervals we have

E(y) = Sln (_sm( g JEIIL )) + cnst

while for two disjoint ones of the same length / at distance r

sime/L/L>2

E(y) = lim InG,, (y) with y= <sim(£ =

ne_>



] Numerical data: previous results

Wichterich et al

@ DMRG results for Ising and XX chain. Two disjoint intervals

10 7

Ising. l
1EN =L Proposed scaling: N (psg) ~ p~ e o*
00, =
0l Neagd00 o .: a=0.96, h=0.47 XX
% ] I a=1.68, h=0.38 Ising
: T l
o ®g Good exponential, bad power law
oooor L1 -5 [ ] Fit unstable

O Seml analytlc results for harmonic chain. Two disjoint intervals

2 N Pt
i Proposed scaling:
5F " “« 05 o' 1
T A itical _ (.— s B
O P B ~ (a4 () e 1=t
L} — \% | l/3
1— "o ‘ o fﬁfﬁf&s::;\'\“‘“\l Good exponential, bad power law

Marcovitch et al



] Numerical data: new results

Semi-analytic results for harmonic chain

L
1 2
2 2.2 < 0
H=3 > [pj +w?qi + (¢j41 — 45) ] critical for =0
j=1
Two adjacent intervals of length ¢£:
. ' | ' | e L=100 wL=10" ' ) ! = = F : :
" 1.=150 o)LZIOZ 1 i SIH(M) (wﬁg)

o L v L= wl= - = L —
5 i:igg o)i:igz [ 4 . sin ——== ( 1+£) onst

E0)-(In 1)/4




Numerical data: new results

Two disjoint intervals of length ¢£:

o
0 0.02 004 0.06 0.08 o [=150

— i % 0.2 04 06 08 1
y y
Ry = TR &) —-1/4 In(1-y) +1/2In(-In(1-y))
0= "

(1 - =D [} Fu(y)Fa(1 - y)]* Problem:
m T I Re(Fe () e () No analytic continuation




Open problems I

® Work out the analytic continuation at 7. —1

at least in some limiting cases
(even for the entanglement entropy)

@ An approach for calculating the negativity for free
fermions 1s still missing!

@ Out of equilibrium?



