Entanglement negativity and quantum field theory

Pasquale Calabrese

University of Pisa

London, June 2014

Joint work with John Cardy and Erik Tonni PRL 109, 130502 (2012) + ArXiv:1210.5359

Entanglement entropy

Consider a system in a quantum state $|\psi\rangle$ ($\rho=|\psi\rangle\langle\psi|$)

$$\mathcal{H} = \mathcal{H}_{A} \otimes \mathcal{H}_{B}$$

Alice can measure only in A, while Bob in the remainder B Alice measures are entangled with Bob's ones: Schmidt deco

$$|\Psi\rangle = \sum_{n} c_{n} |\Psi_{n}\rangle_{A} |\Psi_{n}\rangle_{B}$$
 $c_{n} \geq 0, \sum_{n} c_{n}^{2} = 1$

- If $c_1=1 \Rightarrow |\psi\rangle$ unentagled
- If c_i all equal $\Rightarrow |\psi\rangle$ maximally entangled

A natural measure is the entanglement entropy ($\rho_A = Tr_B \rho$)

$$S_{\mathbf{A}} \equiv -\operatorname{Tr} \rho_{\mathbf{A}} \ln \rho_{\mathbf{A}} = -\sum_{n} c_{n}^{2} \ln c_{n}^{2} = S_{\mathbf{B}}$$

Entanglement entropy

In a 1+1 D CFT Holzhey, Larsen, Wilczek '94

$$S_A = \frac{c}{3} \ln \ell$$

This is the most effective way to determine the central charge

Path integral and Riemann surfaces

For *n* integer, $\operatorname{Tr} \rho_A^n$ is the partition function on a *n*-sheeted Riemann surface

Replica trick:
$$S_A = -\lim_{n \to 1} \frac{\partial}{\partial n} \operatorname{Tr} \rho_A^n$$

Riemann surfaces and CFT

This Riemann surface is mapped to the plane by

$$w \to \zeta = \frac{w-u}{w-v}; \ \zeta \to z = \zeta^{1/n} \Rightarrow w \to z = \left(\frac{w-u}{w-v}\right)^{1/n}$$

 $\operatorname{Tr} \rho_A^n$ is equivalent to the 2-point function of twist fields

 $\operatorname{Tr} \rho_A^n = \langle \mathcal{T}_n(u) \, \bar{\mathcal{T}}_n(v) \rangle$ with scaling dimension $\Delta_{\mathcal{T}_n} = \frac{c}{12} \left(n - \frac{1}{n} \right)$

$$\Delta_{\mathcal{T}_n} = \frac{c}{12} \left(n - \frac{1}{n} \right)$$

Entanglement of non-complementary parts

 $S_{A_1 \cup A_2}$ gives the entanglement between A and B

The mutual information $S_{A_1} + S_{A_2} - S_{A_1 \cup A_2}$ gives an upper bound on the entanglement between A_1 and A_2

Entanglement of non-complementary parts

 $S_{A_1 \cup A_2}$ gives the entanglement between A and B

The mutual information $S_{A_1} + S_{A_2} - S_{A_1 \cup A_2}$ gives an upper bound on the entanglement between A_1 and A_2

What is the entanglement between the two non-complementary parts A_1 and A_2 ?

A **computable** measure of entanglement exists: the logarithmic negativity [Vidal-Werner 02]

Entanglement negativity

Let us denote with $|e_i^{(1)}\rangle$ and $|e_j^{(2)}\rangle$ two bases in A_1 and A_2 ρ is the density matrix of $A_1 \cup A_2$, not pure

The partial transpose is

$$\langle e_i^{(1)} e_j^{(2)} | \rho^{T_2} | e_k^{(1)} e_l^{(2)} \rangle = \langle e_i^{(1)} e_l^{(2)} | \rho | e_k^{(1)} e_j^{(2)} \rangle$$

And the logarithmic negativity

$$\mathscr{E} \equiv \ln || \rho^{T_2} || = \ln \operatorname{Tr} |\rho^{T_2}|$$

$$\operatorname{Tr}|\rho^{T_2}| = \sum_i |\lambda_i| = \sum_{\lambda_i > 0} \lambda_i - \sum_{\lambda_i < 0} \lambda_i$$

It measures "how much" the eigenvalues of ρ^{T_2} are negative because $\text{Tr}(\rho^{T_2})=1$

E is an entanglement monotone (does not decrease under LOCC)
It is also additive

A replica approach

• Let us consider traces of integer powers of ρ^{T_2}

$$\operatorname{Tr}(\rho^{T_2})^{n_e} = \sum_{i} \lambda_i^{n_e} = \sum_{\lambda_i > 0} |\lambda_i|^{n_e} + \sum_{\lambda_i < 0} |\lambda_i|^{n_e} \quad n_e \text{ even}$$

$$\operatorname{Tr}(\rho^{T_2})^{n_o} = \sum_{i} \lambda_i^{n_o} = \sum_{\lambda_i > 0} |\lambda_i|^{n_o} - \sum_{\lambda_i < 0} |\lambda_i|^{n_o} \quad n_o \text{ odd}$$

lacktriangle The analytic continuations from n_e and n_o are different

$$\mathcal{E} = \lim_{n_e \to 1} \ln \operatorname{Tr}(\rho^{T_2})^{n_e} \qquad \qquad \lim_{n_o \to 1} \operatorname{Tr}(\rho^{T_2})^{n_o} = \operatorname{Tr}\rho^{T_2} = 1$$

- For a pure state $\rho = |\psi\rangle\langle\psi|$ $\operatorname{Tr}(\rho^{T_2})^n = \begin{cases} \operatorname{Tr}\rho_2^n & n = n_o \text{ odd} \\ (\operatorname{Tr}\rho_2^{n/2})^2 & n = n_e \text{ even} \end{cases}$
 - \bullet For $n_e \rightarrow 1$, we recover

$$\mathcal{E} = 2 \ln \text{Tr} \rho_2^{1/2}$$
 Renyi entropy 1/2

$$\operatorname{Tr}\rho_A^n = \langle \mathcal{T}_n(u_1)\bar{\mathcal{T}}_n(v_1)\mathcal{T}_n(u_2)\bar{\mathcal{T}}_n(v_2)\rangle$$

$$\rho_{A}$$
=

The partial transposition with respect to A_2 corresponds to exchange row and column indices in A_2

$$\rho_A^{T_2} =$$

$$\rho_{A}$$
=

The partial transposition with respect to A_2 corresponds to exchange row and column indices in A_2

$$\rho_A^{T_2} =$$

It is convenient to reverse the order of indices

$$\rho_A^{C_2} = C\rho_A^{T_2}C = \boxed{\qquad} \qquad \boxed{$$

Gluing together *n* of the above

The partial transposition exchanges two twist operators

 $\text{Tr}(\rho_A \rho_A^{T_2})$ is the partition function on a Klein bottle

Pure States in QFT

- For $n=n_e$ even, the R-surface decouples in two $n_e/2$ surface
- For $n=n_o$ odd, the n_o -sheeted surface remains n_o -sheeted

Pure States in CFT

From
$$\operatorname{Tr}(\rho_A^{T_2})^n = \langle \mathcal{T}_n^2(u_2)\bar{\mathcal{T}}_n^2(v_2) \rangle$$
 and

$$\operatorname{Tr}(\rho_{A}^{T_{2}})^{n_{e}} = (\langle \mathcal{T}_{n_{e}/2}(u_{2})\bar{\mathcal{T}}_{n_{e}/2}(v_{2})\rangle)^{2} = (\operatorname{Tr}\rho_{A_{2}}^{n_{e}/2})^{2}$$
$$\operatorname{Tr}(\rho_{A}^{T_{2}})^{n_{o}} = \langle \mathcal{T}_{n_{o}}(u_{2})\bar{\mathcal{T}}_{n_{o}}(v_{2})\rangle = \operatorname{Tr}\rho_{A_{2}}^{n_{o}},$$

$$\mathcal{T}_{n_o}^2$$
 has dimension $\Delta_{\mathcal{T}_{n_o}^2} = \frac{c}{12} \left(n_o - \frac{1}{n_o} \right)$, the same as \mathcal{T}_{n_o}

$$\mathcal{T}_{n_e}^2$$
 has dimension $\Delta_{\mathcal{T}_{n_e}^2} = \frac{c}{6} \left(\frac{n_e}{2} - \frac{2}{n_e} \right)$

$$||\rho_A^{T_2}|| = \lim_{n_e \to 1} \operatorname{Tr}(\rho_A^{T_2})^{n_e} \propto \ell^{\frac{c}{2}} \Rightarrow \mathcal{E} = \frac{c}{2} \ln \ell + \text{cnst}$$

Two adjacent intervals

3-point function:

$$\operatorname{Tr}(\rho_A^{T_2})^n = \langle \mathcal{T}_n(-\ell_1)\bar{\mathcal{T}}_n^2(0)\mathcal{T}_n(\ell_2)\rangle$$

$$\operatorname{Tr}(\rho_A^{T_2})^{n_e} \propto (\ell_1 \ell_2)^{-\frac{c}{6}(\frac{n_e}{2} - \frac{2}{n_e})} (\ell_1 + \ell_2)^{-\frac{c}{6}(\frac{n_e}{2} + \frac{1}{n_e})}$$

$$||\rho_A^{T_2}|| \propto \left(\frac{\ell_1 \ell_2}{\ell_1 + \ell_2}\right)^{\frac{c}{4}} \Rightarrow \mathcal{E} = \frac{c}{4} \ln \frac{\ell_1 \ell_2}{\ell_1 + \ell_2} + \text{cnst}$$

$$\operatorname{Tr}(\rho_A^{T_2})^{n_o} \propto (\ell_1 \ell_2 (\ell_1 + \ell_2))^{-\frac{c}{12}(n_o - \frac{1}{n_o})}$$

Two disjoint intervals [PC, Cardy Tonni 09/11]

Prelude: The entanglement entropy

[Furukawa et al 09] [Caraglio, Gliozzi 09]

$$\frac{A_1}{u_1} \qquad \frac{A_2}{v_2} \\
\text{Tr} \rho_A^n = c_n^2 \left(\frac{|u_1 - u_2||v_1 - v_2|}{|u_1 - v_1||u_2 - v_2||u_1 - v_2||u_2 - v_1|} \right)^{\frac{c}{6}(n-1/n)} F_n(x) \qquad x = \frac{(u_1 - v_1)(u_2 - v_2)}{(u_1 - u_2)(v_1 - v_2)} \\
\text{4-point ratio}$$

$$F_n(x)$$
 is a calculable function depending on the full operator content

E.g. for Luttinger CFT:
$$F_n(x) = \frac{\Theta(0|\eta\Gamma)\Theta(0|\Gamma/\eta)}{[\Theta(0|\Gamma)]^2}$$

Two disjoint intervals [PC, Cardy Tonni 09/11]

Prelude: The entanglement entropy

[Caraglio, Gliozzi 09]

$$\operatorname{Tr} \rho_{\mathsf{A}}^n = c_n^2 \left(\frac{|u_1 - u_2||v_1 - v_2|}{|u_1 - v_1||u_2 - v_2||u_1 - v_2||u_2 - v_1|} \right)^{\frac{c}{6}(n-1/n)} F_n(x) \qquad x = \frac{(u_1 - v_1)(u_2 - v_2)}{(u_1 - u_2)(v_1 - v_2)} = 4 - \text{point ratio}$$

 $F_n(x)$ is a calculable function depending on the full operator content

It admits the universal expansion

$$\operatorname{Tr} \rho_{A}^{n} = c_{n}^{2} (\ell_{1} \ell_{2})^{-\frac{c}{6}(n-\frac{1}{n})} \sum_{\{k_{i}\}} \left(\frac{\ell_{1} \ell_{2}}{n^{2} r^{2}} \right)^{\sum_{j} (\Delta_{j} + \Delta_{j})} \langle \prod_{j=1}^{n} \phi_{k_{j}} (e^{2\pi i j/n}) \rangle_{\mathbf{C}}^{2}$$

Trivial, but important for the following: At n=1 all coefficients are vanishing, since $\text{Tr} \rho_A = 1$

Two disjoint intervals

$$\operatorname{Tr}(\rho_A^{T_2})^n = \langle T_n(u_1)\overline{T}_n(v_1)\overline{T}_n(u_2)T_n(v_2)\rangle$$

$$A_1 \qquad A_2 \qquad$$

Being $\operatorname{Tr} \rho_A^n$ and $\operatorname{Tr} (\rho_A^{T_2})^n$ related by an exchange of twists:

$$\mathcal{G}_n(y) = (1-y)^{\frac{c}{3}\left(n-\frac{1}{n}\right)} \mathcal{F}_n\left(\frac{y}{y-1}\right)$$

$$\mathcal{E}(y) = \lim_{n_e \to 1} \ln \mathcal{G}_{n_e}(y) = \lim_{n_e \to 1} \ln \left[\mathcal{F}_{n_e} \left(\frac{y}{y - 1} \right) \right]$$

Two disjoint intervals

$$\mathcal{E}(y) = \lim_{n_e \to 1} \ln \mathcal{G}_{n_e}(y) = \lim_{n_e \to 1} \ln \left[\mathcal{F}_{n_e} \left(\frac{y}{y - 1} \right) \right]$$

Consequences:

- The Negativity is a scale invariant quantity!
- Since $\mathcal{F}_n(y) = \sum_i y^{2\Delta_i} s_n(i)$, $\mathcal{E}(y)$ vanishes in y=0 faster than any power
- lacktriangle For $u_1 \rightarrow v_2$, $y \rightarrow 1$ and we recover the result for adjacent intervals

$$G(y) \rightarrow -c/4 \ln(1-y)$$
 times possible log corrections

i.e. the negativity diverges for $y \rightarrow 1$

Finite Systems

A finite system of length L with PBC can be obtained mapping the the plane to the cylinder with the conformal mapping

$$z \to w = \frac{L}{2\pi} \log z$$

This has the net effect to replace any length with

$$\ell \to \frac{L}{\pi} \sin \frac{\pi \ell}{L}$$

Thus for two adjacent intervals we have

$$\mathcal{E}(y) = \frac{c}{4} \ln \left(\frac{L}{\pi} \frac{\sin(\frac{\pi \ell_1}{L}) \sin(\frac{\pi \ell_2}{L})}{\sin \frac{\pi (\ell_1 + \ell_2)}{L}} \right) + \text{cnst}$$

while for two disjoint ones of the same length l at distance r

$$\mathcal{E}(y) = \lim_{n_e \to 1} \ln \mathcal{G}_{n_e}(y)$$
 with $y = \left(\frac{\sin \pi \ell / L}{\sin \pi (\ell + r) / L}\right)^2$

Numerical data: previous results

DMRG results for Ising and XX chain. Two disjoint intervals

Proposed scaling: $\mathcal{N}(\rho_{SE}) \sim \mu^{-h} e^{-\alpha \mu}$

$$\alpha$$
=0.96, h =0.47 XX

$$\alpha$$
=1.68, h =0.38 Ising

Good exponential, bad power law Fit unstable

• Semi-analytic results for harmonic chain. Two disjoint intervals

Marcovitch et al

Proposed scaling:

$$E_{LN}^{
m critical} \sim \left(ar^{-lpha} + f(r)\right)e^{-eta_c r}$$
 $r = \ell/r$ $lpha \sim 1/3$

Good exponential, bad power law

Numerical data: new results

Semi-analytic results for harmonic chain

$$H = \frac{1}{2} \sum_{j=1}^{L} \left[p_j^2 + \omega^2 q_j^2 + (q_{j+1} - q_j)^2 \right]$$
 critical for $\omega = 0$

Two adjacent intervals of length ℓ :

Numerical data: new results

Two disjoint intervals of length ℓ :

$$R_n^{\text{CFT}}(y) = \begin{bmatrix} \frac{(1-y)^{\frac{2}{3}(n-\frac{1}{n})} \prod_{k=1}^{n-1} F_{\frac{k}{n}}(y) F_{\frac{k}{n}}(1-y)}{\prod_{k=1}^{n-1} \text{Re}\left(F_{\frac{k}{n}}(\frac{y}{y-1}) \bar{F}_{\frac{k}{n}}(\frac{1}{1-y})\right)} \end{bmatrix}^{\frac{1}{2}}$$
Problem:
No analytic continuation

Open problems

• Work out the analytic continuation at $n_e \rightarrow 1$ at least in some limiting cases (even for the entanglement entropy)

• An approach for calculating the negativity for free fermions is still missing!

Out of equilibrium?