Exact overlaps in the
anisotropic Kondo problem
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The set-up

mConformal boundary conditions changing operators
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®Forgetting about the left boundary condition (fixed in what follows): ground states
with different conformal boundary conditions are orthogonal.This is the Anderson
Orthogonality catastrophe (Anderson 67)

This has nothing to do with interactions. Can be understood simply for free fermions (Landau
Fermi liquid) as a collective effect : cumulated shift of all the one electron states hidden in the
Fermi sea.

o

energy above Fermi surface phase shifts
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®Anisotropic Kondo problem: there is an interaction on the boundary, and fermions do
not see conformal boundary conditions:

d=73 §=0
—

w

at the free point, problem admits a full Fermi liquid description:
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, , 0—0 i
¥ — jtanh ( 5 X Z) W = Mee T = ILLGGK (Kondo temperature)

If one of the Kondo temperatures is zero (no Kondo coupling), shifts at the Fermi surface differ
by
2

|T§f’ ('Uac|vac>Tl((1):0| x L%, free case

If one of the Kondo temperatures is much greater than the other: orthogonality exponent
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| p@ (vaclvac) o) | o (ﬁ) ; TI(?) = TI({I) free case
K K
K

BIn general,and in the scaling limit such a scalar product is a universal function of the
ratio T,’/Ty’ (itis not perturbative in either of these temperatures)

what is this function in the free case, in the interacting case!
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®Anisotropic Kondo: 3D spinful Fermi liquid interacting with localized magnetic impurity.
Spherical waves + reduction to s mode + bosonization + decoupling of the charge
degrees of freedom + SU(2) interaction broken down to U(I) leaves
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Unfolding + canonical transformation / chiral boson
UJTZHUJZ = /d;l:(am(f))Q + J) (eP?Og_ + 740,
Dimension of the perturbation is

32 7.\’
Z =11= z
87 ( V 27.')

1/1-82
Crossover (Kondo) temperature: Ty o J l/ ST

®This hamiltonian occurs in a variety of other contexts: two state problem in dissipative
quantum mechanics, IRLM,...
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WThe scalar product is a particular case of matrix elements ;@ (w® |\If(1)>TI(<1>

eigenstates

€1y+ee3€n / b &
In the free case: e (55 5 s Big| 0y 5 0 ,9m>qf<1)
K K

In fact, massless particles description valid for general anisotropic Kondo which is integrable

These matrix elements are crucial in the study of quenches: example of the Kondo exciton
(absorption of a photon ~ turning on Kondo coupling)
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®The ratios K 0
o (vadvad] o)
= K

can (in principle) be determined by an axiomatic form-factors approach (Lesage Saleur 98)

This was used to calculate the Loschmidt echo and the work distribution in the Kondo exciton
problem (Vasseur,Trinh, Haas, Saleur 13)

Some information on I,,;(z) <'vac2|'va»c:),,.;p| can then be obtained by resumming the series - not too
efficient however.

® Can one get the overlaps directly and exactly?
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A little formalism

®In imaginary time, the insertion of the impurity
can be thought of in terms of a monodromy matrix
M. It acts on the spin degrees of freedom, and its
elements are operators acting in the (right moving)
free boson Hilbert space. (Bazhanov Lukyanov
Zamolochikov 94)

boson

I spin

BThis is exactly the continuum limit of the six

vertex model monodromy matrix, in the

particular case of a vertical line carrying a large

bare rapidity
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®The monodromy matrix can be expressed as

' . 27 /T . ' R y i
M(J_L) - e?’mPU PBXD [Jl / (q(f /2615¢(0)0-_ + q—O' /26_15(?5(0)0'-&-) g = —¢ 8if3
J0

Integrability of Kondo arises in this context from the zero curvature representation of SG

(02 — 0?)® + %2 sin(fP) =0

[8+ = A+,8_ e A_] — 0

with

1 ) . .
A= F [B(&U(I) + 0,0)0 — me? (e %26~ + el‘m’/zcﬁ)]
1

?

/

non chiral field

A_ = [6(&#13 = atfb)o'f% i ﬂ?,€_0(6i5¢/20— ER 8—iﬂ¢)/20+)]

spectral parameter meo 0.8 J_L
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requires splitting the monodromy matrix

BThe geometry we are interested in is . . o
into two objects propagating (in the

o

=y o

®
IR

vertical sense) from y = —oco to y = 0
and from y =0 to y =0
T

In the classical case, one writes M (0) = T'(6)Q(0)

Jost solutions

so we need a quantum version of the Jost functions (Lukyanov, Shatashvili 93,94)
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®Note: in order to have T and Q act on the
same space one needs to turn to radial
quantization (corner transfer matrix)

> ec‘ 7K

® General arguments leadto  7'(0) = ( Ti(%fzw) YET(—Q(—HF)z'T) )
-+ b /

CPT (0 +im)Th(0) =3, C% =6,

2
0 1/1-£
where now me’ o< J |
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Relations satisfied by T

M Recall that anisotropic Kondo can be studied using massless scattering (massless limit of the
soliton/antisoliton description of SG) (Faddeed Takhtajan,Andrei, Fendley, Fendley Saleur, Zamo”2...)
For R moving particles obeying e =p = me’

Z1(01)Z](02) = Sei(0, — 02) Z(02) Z1 (01)

STIO) = S(0)

S = Sin}.l % g &
sinh % St £+1
. ) sinh %
SyI0) = 5(9)@

enp (i [ 0 g SBICT — /€2
S(0,8) = —exy ( z/ Sl1w92sinh(ﬂ'&)/2§)COSh(Ww/2)>

—00

3

S matrix has quantum su(2) symmetry with gz = e
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B Massless kinks scatter on the Kondo impurity with (Andrei, Fendley)

Note: it does not depend on the anisotropy!

0—0, i
B R(#) = itanh ( > s %) Tx = me

® Conjectured relations for ZF and Joost operators: impurity scattering

O — 0y i
ZH6)Ty(6:) = abi tanh( 1 : — ZI”) Ty(62) Z! (6)

T.(01)Ty(02) = Rgy(6r — 02)T4(62)T.(61)

with \

Ri1(0) = R(9)

. 9 . N
RY~(6) = —R(9 sinhgq quantum su(2) symmetry with qu =¢&1 =¢
- sinh ’QT}G
sinh 2%
Rt — R(§)——L
+ (Cl.’) ( )sinh 12(;19 H(Q) _ —S( _ 9'5_{_ 1)

The lattice scattering matrix
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im

®The ZF and Joost operators have different quantum group symmetries qz =¢¢ qu=¢o1 =¢

like the SG S matrices and the 6 vertex R matrices. Can be seen from the TBA ({ =n—1)

““massive” node
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The main result

® Bosonization of form factors (Lukyanov) leads to (7/7) = ™)

B L sinh 7%5
,[,I(?) <’l)(l-(1|7/‘(1,(7>,1,1(<1) = <T:t(01)T:F(02 -+ 7/7T)> = (1 + 6) m G(O]Z)

2

> dt sin*(0t/r) sinh ¢£
t sinh 2t coshtsinh#(€ + 1)

with minimal solution ) _ o, {/
0

symmetry 12 — O

dimension of the boundary
condition changing operator

® Checks from weak to strong coupling
Kondo fixed point

§
x (vaclvac X exp | —————60 fs1 — 00
T}\)( | >T§(1> P{ 4(£+1) 21, V21 SO /
2] = 1 32
T[('\‘:2)<1,7a(f|‘lf(lt'3>T}\_1) x <T1('\1)> : T,(?) >> T]({l) and hkondo = 187
K
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B Perturbative calculations require both Kondo couplings to be non zero to avoid the catastrophe.

2 g0

The expansion variable is then -
|

Kondo coupling to start with! o

requiring knowledge of correlation functions for non zero

Can be done in the free fermion case where

the calculation can be reformulated in terms

of an Ising model with two different boundary

fields. The scalar product is essentially the term

of order one in L for the partition function L

h1

h2

02
M W A
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Can also be done in the semiclassical case
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® Numerics: difficult because scalar product evolves slowly, and finite size effects are very big (bare
coupling must be very small, but Kondo length much smaller than system size!)

free case:

h=1/4

Double extrapolation
required.
Length up to 800
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Form factors for BC
changing operators

® Follow by ordinary axiomatic approach

Eg leading diagram for Loschmidt echo:

2) (vaclvace) (1
'@ £

leading to work distribution etc.
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® Note that the ratios are well defined in the conformal limit, even if scalar products all vanish.
Example for Ising model

+(01,02|vac) ¢

+(vaclvac) ¢

\

free/fixed BC

— 012 :Q
—’LtanhT 0

so a naive check of unitarity says leads to

2m

\/

0 infinity

slvacjvac); = |4 (vaclvac) ;s ? (1 + [T Lidl panp? U2 )

® In general the approach remains plagued by IR divergences: Anderson catastrophe strikes back!

Monday, June 2, 14




For instance the Loschmidt echo (in imaginary time) for a quench in the free fermion case (Ising)
will involve

—Hp T o o0 do; — B 2
fvacle ™ T vac)p = S07 ) [ Semmm 2y (0, ..., O,|vac) ¢
can be calculated by writing it as
Zoo do; —'r7nzeai |Tb o ()n|wac)f|2

v 7
n=0J 27 |Tb (vaclvac) ¢ |2

same with 7 =0

known from generalized FF axioms
IR divergences can be subtracted
by simultaneous expansion of humerator
and denominator

leading to (Vasseur et al. 2013)
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2 _cos %’—T—:ﬁt
T L o &
t cosh = sinh =

;I':TTb

® This converges also in real time, giving access eg to the Loschmidt echo for a sudden quench in

the RLM
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0.45
0.4}
. quenched tunneling amplitude, which is the same
«_ 03f as the bare Kondo coupling
e
O 025
Qj
T 02 ;
©=0.08
015 1=0.12
0.1 11:0.16
1=0.20
0.05 = = = Form Factors
0 1 1
0 1 2 3 4 5 6
X = lTb

|t (vacle” ™t lvac) | < t=14  at large times follows from CFT (Anderson exponent again)

the work distribution then has a bump around the Kondo temperature (Tureci et al. 201 1)
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Conclusion

® Not sure what this overlaps measures in Kondo from the point of view of entanglement...

| 6(Q2)al

10 102 103 104 10° 106 107 108 109 10
T}/Th

scale!
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- In the tWO State PrObIem Of dlSS|Patlve QM coupling to harmonic bath

/

UBHU[E = Hk — /dL(al(b)z + JJ_O-I + g@rqﬁ(O)az

the decrease of the overlap as [ increases expresses the loss of coherence of the two
state system
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Tb P(W)
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