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Introduction

Entanglement: fundamental quantum property
Different reasons for interest:

1 Quantum Information, Quantum computers
2 Telecommunication and Teleportation
3 Black holes, Information paradox & Quantum Gravity
4 Condensed matter physics −→ non-local correlations
5 Universality in Quantum Fluctuations and Phase Transitions
6 NON LOCALITY intrinsic in Quantum Mechanics?

EPR paradox (1935): uncompleteness of QM or non-locality?
Bell inequalities (1962)−→ local hidden variables exist only if a
certain correlation P < 2
Clauser Friedmann (1966) & Aspect (1980) experiments −→
P > 2 =⇒ possible non-locality of QM
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Entanglement and density matrix

Consider a system divided in two complementary subsystems A and B
Define reduced density matrix for subsystem A

ρA = TrB |0〉〈0|

Quantum entropy (Von Neumann) of Entanglement (E-Entropy)

SA = −TrA(ρA log ρA) = SB
[Bennett, Bernstein, Popescu, Schumacher (1996)]

For a separable state SA = 0, for a maximally entangled state it is
maximal =⇒ SA is a measure of Entanglement

Area law [Srednicki (1993)]

SA ∝ Area(∂A)

Rényi Entropy

Sn =
1

1− n
logTrAρnA =⇒ SA = S1 = lim

n→1
Sn
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Entanglement in a Spin Chain

Hamiltonian of a chain of length L

H =
L∑

k=1

Hk,k+1

Block of spins in the space interval [1, `] is subsystem A
The rest is subsystem B

=⇒ Entanglement of a block of spins in the space interval
[1, `] with the rest of the ground state as a function of `
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Entanglement entropy in CFT
If the chain is critical, use CFT [Holzhey, Larsen, Wilczek 1994 -
Calabrese, Cardy 2004]
Partiton function of a theory with Lagrangean L on a Riemann
surface R= n sheets sewn by the segment [a, b]. It has zero
curvature but for points a, b with conical singularities

Z [L,R] =

ˆ
Dφ exp

[
−
ˆ
R
dxdyL[φ](x , y)

]
n copies of the theory

Z [L,R] =

ˆ
Dφ1...Dφne−

´
C dxdy{L[φ1]+...+L[φn ]} = Z [L(n),C] ≡ Zn
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Twist fields (I)

Path integral with b.c.

φi (x , 0+) = φi+1(x , 0−) , x ∈ [a, b]

Twist fields

φi (y)T (x) = Θ(x1 − y1)T (x)φi+1(y) + Θ(y1 − x1)T (x)φi (y)

φi (y)T̃ (x) = Θ(x1 − y1)T̃ (x)φi−1(y) + Θ(y1 − x1)T̃ (x)φi (y)

Orbifold construction [Knizhnik (1987)]

Zn ∝ 〈T (a, 0)T̃ (b, 0)〉L(n),C

〈O(x)〉L,R =
〈O(x)T (a, 0)T̃ (b, 0)〉L(n),C

〈T (a, 0)T̃ (b, 0)〉L(n),C
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Twist fields (II)

Conformal transformation

w ∈ R 7→ z ∈ C : z =

(
w − a
w − b

) 1
n

Stress-energy tensor T (n) of replica theory

T (n)(z) =
n∑

j=1

Tj(z) transforms as T (w) =

(
dz
dw

)2

T (z)+
c
12
{z ,w}

1-pt function 〈T (w)〉L,R

c
24

(
1− 1

n2

)
(a− b)2

(w − a)2(w − b)2 =
〈T (x)T (a, 0)T̃ (b, 0)〉L(n),C

〈T (a, 0)T̃ (b, 0)〉L(n),C

Comparing, get the conformal dimensions of the twist fields

∆n = ∆̃n =
c
12

(
n − 1

n

)
General definition off-criticality [Cardy, Castro-Alvaredo, Doyon (2008)]
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Density matrix

Density matrix of the vacuum (ground state |Ω〉, not to be confused
with conformal vacumm |0〉)

ρ = |Ω〉〈Ω|

Reduced density matrix
ρA = TrBρ

Traces

TrAρnA ∝ Zn normalized TrAρ̂nA =
Zn

Zn
1

Renyi (Sn) & Von Neumann (S1) entropies

Sn =
1

1− n
log TrAρ̂nA =

1
1− n

log
Zn

Zn
1

, S1 = lim
n→1

Sn
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EE in CFT - Results

Thermodynamic limit L→∞

S(`) ∼
`→∞

c
3
log `+ O(1)

c = central charge of CFT, O(1) = non-universal
Obtain results for L finite through conformal map plane → strip

S(`, L) =
c
3
log
(
L
π
sin

`π

L

)
+ O(1)

O(1) does not depend on `/L.
Off-criticality S is finite for `, L→∞ and computable exactly in
integrable spin chains through CTM approach.

S(ξ) ∼
ξ→∞

c
3
log ξ + O(1)
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Non-unitary models

Free energy (β = 1/kT ) [Affleck; Blote, Cardy, Nightingale (1986)]

F (β) = f Lβ
bulk

+ f̃ β
boundary

− πc
6β

Casimir

+ ...

For non-unitary models [Itzykson, Saleur, Zuber (1986)]

c 7→ ceff = c − 24∆min

Is it true also for EE?
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EE in non-unitary CFT

TrA(ρnA) in the vacuum in a critical chain with boundary.
Zn =orbifold on the half-plane

l

ti
m
e

A B

tim
e

A

B

ti
m
e

A

B

a−state

b−state

Exchange role of time and space, then transform to the cylinder

z 7→ w = i log
`− z
`+ z

Zn = 〈a|e− log `
ε ·Horb |b〉 , Zn

1 = 〈a|e− log `
ε ·Hrep |b〉
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Stress-energy tensor

T (z) =
∑
k∈Z

Lk
zk+2 =

n∑
j=1

T (j)(z) =⇒ H = L0 + L̄0 −
c
12

T (j)(x + 2π) = T (j+1)(x) orbifold (cyclic)
T (j)(x + 2π) = T (j)(x) replica (periodic)

replica: n commuting Virc : L
(j)
k , k ∈ Z

Lrepk =
n∑

j=1

L(j)
k ∈ Virnc =⇒ Hrep = Lrep0 + L̄rep0 −

nc
12

orbifold: Torb(x) = Tb x
2π c(x mod 2π) x ∈ [0, 2πn[

Torb(x) =
∑
k∈Z

Lk
zk+2 with Lk ∈ Virc k ∈ Z

T (x) =
n∑

j=1

Torb(x + 2πj) has modes Lnk , k ∈ Z
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Orbifold / (Replica)n

Define: [Doyon, Hoogeveen, Bernard (2013)]

Lorbk =
Lnk
n

+ ∆T δ0,k ∈ Virnc =⇒ Horb = Lorb0 + L̄orb0 − nc
12

Insert a complete set of states

Zn = 〈a|e− log `
ε ·Horb

∑
s

|s〉〈s|b〉 ∝ e−2 log `
ε (∆:T φ:− nc

12 )

Zn
1 = 〈a|e− log `

ε ·Hrep
∑
s

|s〉〈s|b〉 ∝ e−2 log `
ε (∆min− nc

12 )

Zn

Zn
1

= TrAρnA =
(ε
`

) ceff
12 (n− 1

n )+...

=⇒ Sn =
ceff (n + 1)

12n
log

`

ε
+...

S =
ceff
6

log
`

ε
+ ...
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New twist field

We have introduced a new field that acts as a twist [Castro-Alvaredo, Doyon,
Levi (2012)]

: T φ : (x) = lim
ε→0

ε2(1− 1
n )∆minT (x + ε)φ(x)

allowing to express the trace of powers of ρ in a natural way in
non-unitary models where the vacuum is not the conformally invariant
state |0〉, but

|φ〉 = φ(0)|0〉

where φ(z) is the field with lower (negative) conformal dimesion ∆min

TrAρnA ∝


〈:T φ:(`)〉
〈φ(`)〉n on the half-plane

〈:T φ:(`):T φ:(0)〉
〈φ(`)φ(0)〉n on the plane

The same approach could be used also for negativity
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Corner Transfer Matrix

CTM is a very useful tool [Baxter (1972)]

As̄,s̄′ =
∑
•

∏
wi

and analogously B,C ,D with 90° rotations.
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Partition function and CTM

Now we can build up the whole lattice by using the 4 CTM’s

Partition function

Z =
∑

σ̄,σ̄′,σ̄′′,σ̄′′′

Aσ̄σ̄′Bσ̄′σ̄′′Cσ̄′′σ̄′′′Dσ̄′′′σ̄ = Tr(ABCD)
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Reduced density matrix and CTM

Now suppose to divide the spins in two subsystems A:
σ̄A = (σ1, ..., σp) and B: σ̄B = (σp+1, ..., σL), i.e. σ̄ = (σ̄A, σ̄B)

Reduced density matrix of subsystem A

ρA(σ̄A, σ̄
′
A) =

∑
σ̄B

〈σ̄A, σ̄B |0〉〈0|σ̄′A, σ̄B〉 = TrB〈σ̄A|0〉〈0|σ̄′A〉

�

�

��

�

�

�
�
�

�
��

�

� �

�

ρA = (ABCD)σ̄,σ̄′ =⇒ Sn =
1

1− n
log TrAρnA
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EE in FB models
Continuum limit of ABF models on square lattice (RSOSm). CTM
diagonalization is given and the calculation of ρA has been done
[Franchini, De Luca (2012)]
Can be generalized to FB non-unitary RSOSm,m′ models
a = 1, ...,m′ − 1 , d = 1, ...,m − 1 and t = T−Tc

Tc

Zn =
m′−1∑
a=1

a=b dm′m c mod 2
,

E (xa, y)nF (a, d ; x2n) , y = e
4π2
log t , x = y

m′−m
m′

E (x , y) =
∑
n∈Z

(−1)ky
k(k−1)

2 xk F (a, d ; q) = q
(a−d )(a−d−1)

4 q
c
24−∆daχda(q)

Renyi entropy

Sn =
1

1− n
log TrAρnA =

1
1− n

logZn −
n

1− n
logZ1

expanding for t → 0 with ξ ∼ t−ν , with ν = m′
4(m′−m)

Sn =
(n + 1)ceff

12n
log ξ + ...
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Numerical results

Spin chain [von Gehlen (1994)]

H(λ, h) =
1
2

L∑
i=1

(σzi + λσxi σ
x
i+1 + ihσxi )

has a critical line in the (λ, h)-plane with c = − 22
5 (ceff = 2

5 ): Lee-Yang
universality class.

S =
ceff
3 log

(
L
π
sin `πL

)
+ α Numerically ceff = 0.4056 and α = 0.3952
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Quantum critical hamiltonian

“The answer is yes, but... what was the question?” [W. Allen]: We
know the 2D classical lattice model, we can compute formally Sn,
but what is the quantum Hamiltonian we are dealing with?

At criticality Uq(sl(2)) invariant XXZ model [Alcaraz, Barber, Batchelor
(1988) - Pasquier, Saleur (1990)]

H = −J

[
N−1∑
n=1

(σxnσ
x
n+1 + σynσ

y
n+1 +

q + q−1

2
σznσ

z
n+1) +

q − q−1

2
(σz1 − σzN)

]

Can be rewritten in terms of Temperley-Lieb operators

H = −J
N−1∑
n=1

en

e2
n = −(q+q−1)en , enen±1en = en , enem = emen if |n−m| > 1

F. Ravanini EE in non-unitary CFT



Quantum critical hamiltonian

“The answer is yes, but... what was the question?” [W. Allen]: We
know the 2D classical lattice model, we can compute formally Sn,
but what is the quantum Hamiltonian we are dealing with?

At criticality Uq(sl(2)) invariant XXZ model [Alcaraz, Barber, Batchelor
(1988) - Pasquier, Saleur (1990)]

H = −J

[
N−1∑
n=1

(σxnσ
x
n+1 + σynσ

y
n+1 +

q + q−1

2
σznσ

z
n+1) +

q − q−1

2
(σz1 − σzN)

]

Can be rewritten in terms of Temperley-Lieb operators

H = −J
N−1∑
n=1

en

e2
n = −(q+q−1)en , enen±1en = en , enem = emen if |n−m| > 1

F. Ravanini EE in non-unitary CFT



Quantum off-critical hamiltonian

What happens off-criticality? Introduce the tile operators
(a = (a1, a2, ..., aN))

1|a
′

a =
∏
i

δai ,a′i

ej |a
′

a =

∏
i 6=j

δai ,a′i

 δaj−1,aj+1

 s(a′jλ)

s(aj+1λ)
, s(u) = ϑ1(u, t)

gj |a
′

a =

[(∏
i

δai ,a′i

)
δaj−1,aj+1

] [
(a′j−aj+1)

s′(aj+1λ)

s(aj+1λ) + s′(λ)
s(λ) −

s′(0)
s(λ)

s(a′jλ)

s(aj+1λ)

]

Hamiltonian

H = − d
du

logT(u)|u=0 = −J
N−1∑
j=1

[
s ′(0)

s(λ)
ej −

s ′(λ)

s(λ)
1 + gj

]

Limit t → 0: gj → 0 while ej →TL-algebra
In general, algbera with two parameters (=⇒ elliptic algebras?)
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Summary

Von Neumann and Rényi E-Entropies are crucial tools to study
entanglement in quantum systems. In integrable models, they can
be calculated using integrable techniques.
Corner Transfer Matrix technique allows the exact calculation of
bipartite E-Entropy in spin chains. Having the exact formula at
hand, one can test some of the open issues about entanglement in
these models.
In the case of non-unitary theories, the coefficient of the logarithmic
divergence near criticality gives ceff instead of c . Although this
result is not surprising, it sheds more light on the general way to
compute finite interval density matrices in generic CFT’s.
An integrable way to compute finite size E-Entropy is to be
developed. It would complement the present knowledge by new
precious information.
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Conclusions

Entanglement entropy is a new way to approach interesting problems
in theoretical physics and it should be better understood in
(integrable) QFT, as it seems crucial in the solution of challenging
paradoxes, like the information loss in black holes.
It also stimulates progresses in mathematics, in the best tradition of
the integrability approach.

Thank you!!!
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