
Shell-Filling Effect in the Entanglement 
Entropies of Spinful Fermions

Fabian Essler (Oxford)

London, June 2014

Collaborators: 
P. Calabrese (Pisa), A. Läuchli (Insbruck)

PRL 110, 115701 (2013)



1. Ground state entanglement in 1+1 dim CFTs
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Renyi:

von Neumann:

S1= -Tr[ρA ln(ρA)]

Sn= ln(Tr[(ρA)n])/(1-n)
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Ejima, Bhaseen, 
Essler et al ’112-component Bose-Hubbard-Feshbach problem

- bosonic atoms and molecules hopping on a 1D lattice
- repel when on the same site  with Uaa ,Umm, Uam

- Feshbach conversion term: 2 atoms ↔ 1 molecule
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FIG. 1. (color online). (a) Phase diagram of the 1D Hamilto-
nian (1) with total density ⇢T = NT/L = 2, showing a Mott
insulator (MI), a molecular condensate (MC), and a coupled
atomic plus molecular condensate (AC+MC). We use DMRG
with up to L = 128 sites and open boundary conditions. We
choose parameters ✏a = 0, Uaa/2 = Umm/2 = Uam = g = U ,
ta = 1, tm = 1/2, for comparison with Ref. [37]. The squares
and circles indicate the vanishing of the one-particle and two-
particle gaps, E1g and E2g, respectively, as L ! 1. The stars
and crosses indicate where the molecular and atomic correla-
tion exponents, ⌫m and ⌫a reach 1/4 in the MC and AC+MC
phases respectively. These values correspond to a molecular
KT transition and an atomic KT transition respectively. The
remaining panels (b), (c) and (d) show the variation of the
extrapolated gaps, E1g and E2g with L ! 1, on passing
through the phase boundaries at the corresponding points in
panel (a). In particular, we provide detailed evidence for an
Ising quantum phase transition occurring between the MC
and AC+MC phases.

fully below, the MC phase may be interpreted as a pair-
ing phase of bosons in the absence of atomic condensa-
tion. In contrast, the AC+MC phase has both molec-
ular and atomic condensation. In comparison to the
qualitative phase diagram presented in Ref. [37], inferred
from quantum Monte Carlo simulations on smaller sys-
tem sizes, we find no evidence for a single-component
atomic superfluid phase co-existing with non-condensed
molecules. This is in accord with theoretical expecta-
tions in higher dimensions, where atomic condensation
is always accompanied by molecular condensation [32–
34] provided the molecules are present; in the extreme
limit where ✏

m

! 1, occurring on the boundary of the
AC+MC phase, the molecules are explicitly excluded by
the chemical potential as shown in Fig. 2. The conclu-
sions of Ref. [37] have also come under scrutiny due to

the additional claims of superfluidity within the Mott
phase [39, 71]. Here, however, our main focus is on the
character of the transition between the distinct MC and
AC+MC superfluids. In the subsequent discussion we
will begin with symmetry arguments and field theory pre-
dictions before turning to a comparison with DMRG.

IV. FIELD THEORY DESCRIPTION

A heuristic way to understand the possibility of an
Ising quantum phase transition between the distinct MC
and AC+MC superfluids is via the generic number-phase
relationships, a ⇠ p

⇢
a

ei#a and m ⇠ p
⇢
m

ei#m , where ⇢
a

and ⇢
m

are the average atomic and molecular densities
respectively. Substituting these expressions into (1), the
Feshbach term (2) takes the form [34]

H
F

⇠ 2g⇢
a

p
⇢
m

cos(#
m

� 2#
a

). (4)

Minimizing this interaction locks the phases of the atomic
and molecular condensates according to the relationship

#
m

� 2#
a

= ±⇡, (5)

where for simplicity we assume g > 0. We see that the
phases are locked, but only modulo ⇡, and this gives
rise to the possibility of a discrete symmetry breaking Z

2

transition between Feshbach coupled superfluids. Denot-
ing #

m

⌘ #, one may recast the number-phase relation-
ships in the form [34]

m ⇠ p
⇢
m

ei#, a ⇠ � ei#/2, (6)

where the Feshbach locking is explicitly enforced and
� ⇠ p

⇢
a

e⌥i⇡/2 plays the role of an Ising degree of free-
dom. The decomposition (6) will play a central role in
the subsequent analysis and allows one to gain a handle
on the correlation functions and the principal features of
the phase diagram.
An alternative way to understand the possibility of

an Ising quantum phase transition between the MC and
AC+MC phases is via the symmetry of the Hamiltonian
(1) under U(1)⇥ Z

2

transformations:

m ! ei✓m, a ! ei(✓/2±⇡)a, (7)

where ✓ 2 R. Before discussing the problem in 1D, where
continuous symmetry breaking is absent, we first con-
sider the behavior in higher dimensions [32–34]. In this
case, the molecular condensate (MC) phase has hmi 6= 0
and hai = 0. This only breaks the U(1) symmetry,
and leaves the Z

2

symmetry, a ! �a, unbroken. This
corresponds to an Ising degree of freedom in the disor-
dered phase, coexisting with molecular superfluidity. In
contrast, the coupled atomic plus molecular condensate
(AC+MC) phase has hmi 6= 0 and hai 6= 0. This breaks
the U(1) ⇥ Z

2

symmetry completely and corresponds to
a Z

2

ordered Ising degree of freedom, coexisting with
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2 particles per site

2

the di↵erent phases and to establish a detailed compar-
ison with DMRG. In Sec. V we provide a quantitative
account of the finite-size scaling of the zero-momentum
occupation numbers and the visibility. We contrast our
results with those of Refs. [37, 38]. In Sec. VI we dis-
cuss the behavior of the entanglement entropy and the
emergence of Ising criticality at the transition between
the distinct paired superfluids. We also discuss the be-
havior at the superfluid–Mott insulator transitions. In
Sec. VII we describe the Ising scaling regime, and dis-
cuss a variety of ways to extract the principal Ising char-
acteristics. This includes the Ising order parameter and
the correlation length using a finite-size scaling analysis
of the atomic and molecular correlation functions. We
also discuss the utility of a suitable ratio of the atomic
and molecular two-point functions for analyzing the Ising
quantum phase transition. We conclude in Sec. VIII and
provide further directions for research.

II. MODEL

We consider the Hamiltonian

H =
X

i↵

✏
↵

n
i↵

�
X

i

X

↵

t
↵

⇣
b†
i↵

b
i+1↵

+H.c.
⌘

+
X

i↵↵

0

U
↵↵

0

2
n
i↵

(n
i↵

0 � �
↵↵

0) + H
F

,
(1)

describing bosons, b
i↵

, hopping on a 1D lattice with sites
i, where ↵ = a,m labels atoms and molecules [35–40].
Here, ✏

↵

are on-site potentials, t
↵

are nearest neighbor
hopping parameters, and U

↵↵

0 are interactions. We as-
sume that molecule formation is described by the s-wave
Feshbach resonance term,

H
F

= g
X

i

(m†
i

a
i

a
i

+H.c.), (2)

where we denote m
i

⌘ b
im

and a
i

⌘ b
ia

; for re-
cent work on the p-wave problem see Refs. [66, 67].
This conversion implies that the number of atoms and
molecules are not separately conserved, but the total,
N

T

⌘ P
i

(n
ia

+ 2n
im

), is preserved. For simplicity, in
writing Eq. (1) we neglect any e↵ects of higher Bloch
bands in optical lattices [68–70]. In this respect, the
Hamiltonian (1) may be regarded as a lattice regular-
ization of the continuum models studied in Refs. [32–34];
see also Refs. [24–26]. This approach is very convenient
for numerical simulations, and enables us to investigate
the superfluid transitions where lattice e↵ects are ger-
mane. It also allows us to make contact with previous
quantum Monte Carlo (QMC) simulations [37, 38] and to
place the problem on a firmer footing. As in the original
works [32–34], we neglect the e↵ects of three body losses
and finite molecular lifetimes.

In this manuscript we use DMRG on 1D systems with
up to L = 512 sites, where we set the lattice spacing to

unity and adopt energy units where t
a

= 1. We further-
more set t

m

= 1/2 throughout. We work in the canon-
ical ensemble with the total density ⇢

T

= N
T

/L = 2
held fixed and allow up to five atoms and five molecules
per site, corresponding to a large Hilbert space of dimen-
sion (6 ⇥ 6)L; for a discussion of the e↵ects of chang-
ing the local Hilbert space dimension see Appendix A.
With open (periodic) boundary conditions we retain up
to m

⇢

= 2400 (m
⇢

= 3000) states in the density matrix
in order to ensure that the discarded weight is less than
1⇥ 10�10 (1⇥ 10�8).

III. PHASE DIAGRAM

As we discussed in Ref. [63], the qualitative phase di-
agram of the 1D lattice Hamiltonian (1) was previously
considered using QMC simulations [37, 38]. In addition
to delineating the Mott insulating and superfluid phase
boundaries, this work led to intriguing predictions of su-
perfluidity within the Mott phase, and an additional su-
perfluid phase not present in mean field theory [32–36].
Although we find very good quantitative agreement with
many of the numerical results [37, 38], these additional
predictions are at variance with our recent findings [63]
which combine field theory with DMRG. This was also
suggested by our earlier studies using hardcore bosons
[39, 40]. It has recently been argued that the absence
of particle conservation hindered the interpretation of
these previous QMC simulations [71]. In this manuscript
we will further demonstrate that the use of momentum
space observables, including the zero-momentum occupa-
tion numbers and the visibility, also complicated the in-
terpretation of these earlier finite-size QMC simulations.
In order to put the problem on a more stable platform,

we present a section of the phase diagram in Fig. 1, with
parameters chosen for comparison with Ref. [37]. (Note
that our conventions di↵er from Ref. [37] by a factor of
1/2 in the interaction terms so that double occupancy
corresponds directly to U

↵↵

0 . Also, ✏
m

plays the role of
their detuning parameter, D, when ✏

a

= 0.) The phase
boundaries shown in Fig. 1 correspond to the vanishing of
the one-particle and two-particle excitation gaps, E

1g

⌘
µ
1p

(L)�µ
1h

(L) and E
2g

⌘ µ
2p

(L)�µ
2h

(L) respectively,
where the data are extrapolated to the thermodynamic
limit, L ! 1. Here

µ
np

(L) = [E
0

(L,N
T

+ n)� E
0

(L,N
T

)] /n,

µ
nh

(L) = [E
0

(L,N
T

)� E
0

(L,N
T

� n)] /n,
(3)

where E
0

(L,N) is the ground state energy for a system
of size L and a total number N of atoms and molecules.
The phase diagram in Fig. 1 consists of three distinct
phases: a Mott insulator (MI) with gaps for both exci-
tations, E

1g

6= 0 and E
2g

6= 0, a molecular condensate
(MC) with a one-particle gap E

1g

6= 0 and E
2g

= 0, and
a coupled atomic plus molecular condensate (AC+MC)
with E

1g

= 0 and E
2g

= 0. As we shall discuss more

2
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terpretation of these earlier finite-size QMC simulations.
In order to put the problem on a more stable platform,

we present a section of the phase diagram in Fig. 1, with
parameters chosen for comparison with Ref. [37]. (Note
that our conventions di↵er from Ref. [37] by a factor of
1/2 in the interaction terms so that double occupancy
corresponds directly to U
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0 . Also, ✏
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plays the role of
their detuning parameter, D, when ✏
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= 0.) The phase
boundaries shown in Fig. 1 correspond to the vanishing of
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where E
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(L,N) is the ground state energy for a system
of size L and a total number N of atoms and molecules.
The phase diagram in Fig. 1 consists of three distinct
phases: a Mott insulator (MI) with gaps for both exci-
tations, E
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6= 0 and E
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6= 0, a molecular condensate
(MC) with a one-particle gap E
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6= 0 and E
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= 0, and
a coupled atomic plus molecular condensate (AC+MC)
with E
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= 0 and E
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the di↵erent phases and to establish a detailed compar-
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account of the finite-size scaling of the zero-momentum
occupation numbers and the visibility. We contrast our
results with those of Refs. [37, 38]. In Sec. VI we dis-
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emergence of Ising criticality at the transition between
the distinct paired superfluids. We also discuss the be-
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cuss a variety of ways to extract the principal Ising char-
acteristics. This includes the Ising order parameter and
the correlation length using a finite-size scaling analysis
of the atomic and molecular correlation functions. We
also discuss the utility of a suitable ratio of the atomic
and molecular two-point functions for analyzing the Ising
quantum phase transition. We conclude in Sec. VIII and
provide further directions for research.
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FIG. 1. (color online). (a) Phase diagram of the 1D Hamilto-
nian (1) with total density ⇢T = NT/L = 2, showing a Mott
insulator (MI), a molecular condensate (MC), and a coupled
atomic plus molecular condensate (AC+MC). We use DMRG
with up to L = 128 sites and open boundary conditions. We
choose parameters ✏a = 0, Uaa/2 = Umm/2 = Uam = g = U ,
ta = 1, tm = 1/2, for comparison with Ref. [37]. The squares
and circles indicate the vanishing of the one-particle and two-
particle gaps, E1g and E2g, respectively, as L ! 1. The stars
and crosses indicate where the molecular and atomic correla-
tion exponents, ⌫m and ⌫a reach 1/4 in the MC and AC+MC
phases respectively. These values correspond to a molecular
KT transition and an atomic KT transition respectively. The
remaining panels (b), (c) and (d) show the variation of the
extrapolated gaps, E1g and E2g with L ! 1, on passing
through the phase boundaries at the corresponding points in
panel (a). In particular, we provide detailed evidence for an
Ising quantum phase transition occurring between the MC
and AC+MC phases.

fully below, the MC phase may be interpreted as a pair-
ing phase of bosons in the absence of atomic condensa-
tion. In contrast, the AC+MC phase has both molec-
ular and atomic condensation. In comparison to the
qualitative phase diagram presented in Ref. [37], inferred
from quantum Monte Carlo simulations on smaller sys-
tem sizes, we find no evidence for a single-component
atomic superfluid phase co-existing with non-condensed
molecules. This is in accord with theoretical expecta-
tions in higher dimensions, where atomic condensation
is always accompanied by molecular condensation [32–
34] provided the molecules are present; in the extreme
limit where ✏

m

! 1, occurring on the boundary of the
AC+MC phase, the molecules are explicitly excluded by
the chemical potential as shown in Fig. 2. The conclu-
sions of Ref. [37] have also come under scrutiny due to

the additional claims of superfluidity within the Mott
phase [39, 71]. Here, however, our main focus is on the
character of the transition between the distinct MC and
AC+MC superfluids. In the subsequent discussion we
will begin with symmetry arguments and field theory pre-
dictions before turning to a comparison with DMRG.

IV. FIELD THEORY DESCRIPTION

A heuristic way to understand the possibility of an
Ising quantum phase transition between the distinct MC
and AC+MC superfluids is via the generic number-phase
relationships, a ⇠ p

⇢
a

ei#a and m ⇠ p
⇢
m

ei#m , where ⇢
a

and ⇢
m

are the average atomic and molecular densities
respectively. Substituting these expressions into (1), the
Feshbach term (2) takes the form [34]

H
F

⇠ 2g⇢
a

p
⇢
m

cos(#
m

� 2#
a

). (4)

Minimizing this interaction locks the phases of the atomic
and molecular condensates according to the relationship

#
m

� 2#
a

= ±⇡, (5)

where for simplicity we assume g > 0. We see that the
phases are locked, but only modulo ⇡, and this gives
rise to the possibility of a discrete symmetry breaking Z

2

transition between Feshbach coupled superfluids. Denot-
ing #

m

⌘ #, one may recast the number-phase relation-
ships in the form [34]

m ⇠ p
⇢
m

ei#, a ⇠ � ei#/2, (6)

where the Feshbach locking is explicitly enforced and
� ⇠ p

⇢
a

e⌥i⇡/2 plays the role of an Ising degree of free-
dom. The decomposition (6) will play a central role in
the subsequent analysis and allows one to gain a handle
on the correlation functions and the principal features of
the phase diagram.
An alternative way to understand the possibility of

an Ising quantum phase transition between the MC and
AC+MC phases is via the symmetry of the Hamiltonian
(1) under U(1)⇥ Z

2

transformations:

m ! ei✓m, a ! ei(✓/2±⇡)a, (7)

where ✓ 2 R. Before discussing the problem in 1D, where
continuous symmetry breaking is absent, we first con-
sider the behavior in higher dimensions [32–34]. In this
case, the molecular condensate (MC) phase has hmi 6= 0
and hai = 0. This only breaks the U(1) symmetry,
and leaves the Z

2

symmetry, a ! �a, unbroken. This
corresponds to an Ising degree of freedom in the disor-
dered phase, coexisting with molecular superfluidity. In
contrast, the coupled atomic plus molecular condensate
(AC+MC) phase has hmi 6= 0 and hai 6= 0. This breaks
the U(1) ⇥ Z

2

symmetry completely and corresponds to
a Z

2

ordered Ising degree of freedom, coexisting with
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nian (1) with total density ⇢T = NT/L = 2, showing a Mott
insulator (MI), a molecular condensate (MC), and a coupled
atomic plus molecular condensate (AC+MC). We use DMRG
with up to L = 128 sites and open boundary conditions. We
choose parameters ✏a = 0, Uaa/2 = Umm/2 = Uam = g = U ,
ta = 1, tm = 1/2, for comparison with Ref. [37]. The squares
and circles indicate the vanishing of the one-particle and two-
particle gaps, E1g and E2g, respectively, as L ! 1. The stars
and crosses indicate where the molecular and atomic correla-
tion exponents, ⌫m and ⌫a reach 1/4 in the MC and AC+MC
phases respectively. These values correspond to a molecular
KT transition and an atomic KT transition respectively. The
remaining panels (b), (c) and (d) show the variation of the
extrapolated gaps, E1g and E2g with L ! 1, on passing
through the phase boundaries at the corresponding points in
panel (a). In particular, we provide detailed evidence for an
Ising quantum phase transition occurring between the MC
and AC+MC phases.

fully below, the MC phase may be interpreted as a pair-
ing phase of bosons in the absence of atomic condensa-
tion. In contrast, the AC+MC phase has both molec-
ular and atomic condensation. In comparison to the
qualitative phase diagram presented in Ref. [37], inferred
from quantum Monte Carlo simulations on smaller sys-
tem sizes, we find no evidence for a single-component
atomic superfluid phase co-existing with non-condensed
molecules. This is in accord with theoretical expecta-
tions in higher dimensions, where atomic condensation
is always accompanied by molecular condensation [32–
34] provided the molecules are present; in the extreme
limit where ✏

m

! 1, occurring on the boundary of the
AC+MC phase, the molecules are explicitly excluded by
the chemical potential as shown in Fig. 2. The conclu-
sions of Ref. [37] have also come under scrutiny due to

the additional claims of superfluidity within the Mott
phase [39, 71]. Here, however, our main focus is on the
character of the transition between the distinct MC and
AC+MC superfluids. In the subsequent discussion we
will begin with symmetry arguments and field theory pre-
dictions before turning to a comparison with DMRG.
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A heuristic way to understand the possibility of an
Ising quantum phase transition between the distinct MC
and AC+MC superfluids is via the generic number-phase
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ei#m , where ⇢
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and ⇢
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dom. The decomposition (6) will play a central role in
the subsequent analysis and allows one to gain a handle
on the correlation functions and the principal features of
the phase diagram.
An alternative way to understand the possibility of

an Ising quantum phase transition between the MC and
AC+MC phases is via the symmetry of the Hamiltonian
(1) under U(1)⇥ Z
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transformations:

m ! ei✓m, a ! ei(✓/2±⇡)a, (7)

where ✓ 2 R. Before discussing the problem in 1D, where
continuous symmetry breaking is absent, we first con-
sider the behavior in higher dimensions [32–34]. In this
case, the molecular condensate (MC) phase has hmi 6= 0
and hai = 0. This only breaks the U(1) symmetry,
and leaves the Z
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symmetry, a ! �a, unbroken. This
corresponds to an Ising degree of freedom in the disor-
dered phase, coexisting with molecular superfluidity. In
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FIG. 1. (color online). (a) Phase diagram of the 1D Hamilto-
nian (1) with total density ⇢T = NT/L = 2, showing a Mott
insulator (MI), a molecular condensate (MC), and a coupled
atomic plus molecular condensate (AC+MC). We use DMRG
with up to L = 128 sites and open boundary conditions. We
choose parameters ✏a = 0, Uaa/2 = Umm/2 = Uam = g = U ,
ta = 1, tm = 1/2, for comparison with Ref. [37]. The squares
and circles indicate the vanishing of the one-particle and two-
particle gaps, E1g and E2g, respectively, as L ! 1. The stars
and crosses indicate where the molecular and atomic correla-
tion exponents, ⌫m and ⌫a reach 1/4 in the MC and AC+MC
phases respectively. These values correspond to a molecular
KT transition and an atomic KT transition respectively. The
remaining panels (b), (c) and (d) show the variation of the
extrapolated gaps, E1g and E2g with L ! 1, on passing
through the phase boundaries at the corresponding points in
panel (a). In particular, we provide detailed evidence for an
Ising quantum phase transition occurring between the MC
and AC+MC phases.

fully below, the MC phase may be interpreted as a pair-
ing phase of bosons in the absence of atomic condensa-
tion. In contrast, the AC+MC phase has both molec-
ular and atomic condensation. In comparison to the
qualitative phase diagram presented in Ref. [37], inferred
from quantum Monte Carlo simulations on smaller sys-
tem sizes, we find no evidence for a single-component
atomic superfluid phase co-existing with non-condensed
molecules. This is in accord with theoretical expecta-
tions in higher dimensions, where atomic condensation
is always accompanied by molecular condensation [32–
34] provided the molecules are present; in the extreme
limit where ✏

m

! 1, occurring on the boundary of the
AC+MC phase, the molecules are explicitly excluded by
the chemical potential as shown in Fig. 2. The conclu-
sions of Ref. [37] have also come under scrutiny due to

the additional claims of superfluidity within the Mott
phase [39, 71]. Here, however, our main focus is on the
character of the transition between the distinct MC and
AC+MC superfluids. In the subsequent discussion we
will begin with symmetry arguments and field theory pre-
dictions before turning to a comparison with DMRG.
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A heuristic way to understand the possibility of an
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and AC+MC superfluids is via the generic number-phase
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and ⇢
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respectively. Substituting these expressions into (1), the
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phases are locked, but only modulo ⇡, and this gives
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dom. The decomposition (6) will play a central role in
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on the correlation functions and the principal features of
the phase diagram.
An alternative way to understand the possibility of
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(1) under U(1)⇥ Z
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transformations:
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where ✓ 2 R. Before discussing the problem in 1D, where
continuous symmetry breaking is absent, we first con-
sider the behavior in higher dimensions [32–34]. In this
case, the molecular condensate (MC) phase has hmi 6= 0
and hai = 0. This only breaks the U(1) symmetry,
and leaves the Z
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symmetry, a ! �a, unbroken. This
corresponds to an Ising degree of freedom in the disor-
dered phase, coexisting with molecular superfluidity. In
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the di↵erent phases and to establish a detailed compar-
ison with DMRG. In Sec. V we provide a quantitative
account of the finite-size scaling of the zero-momentum
occupation numbers and the visibility. We contrast our
results with those of Refs. [37, 38]. In Sec. VI we dis-
cuss the behavior of the entanglement entropy and the
emergence of Ising criticality at the transition between
the distinct paired superfluids. We also discuss the be-
havior at the superfluid–Mott insulator transitions. In
Sec. VII we describe the Ising scaling regime, and dis-
cuss a variety of ways to extract the principal Ising char-
acteristics. This includes the Ising order parameter and
the correlation length using a finite-size scaling analysis
of the atomic and molecular correlation functions. We
also discuss the utility of a suitable ratio of the atomic
and molecular two-point functions for analyzing the Ising
quantum phase transition. We conclude in Sec. VIII and
provide further directions for research.
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We consider the Hamiltonian

H =
X

i↵

✏
↵

n
i↵

�
X

i

X

↵

t
↵

⇣
b†
i↵

b
i+1↵

+H.c.
⌘

+
X

i↵↵

0

U
↵↵

0

2
n
i↵

(n
i↵

0 � �
↵↵

0) + H
F

,
(1)

describing bosons, b
i↵

, hopping on a 1D lattice with sites
i, where ↵ = a,m labels atoms and molecules [35–40].
Here, ✏

↵

are on-site potentials, t
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are nearest neighbor
hopping parameters, and U
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0 are interactions. We as-
sume that molecule formation is described by the s-wave
Feshbach resonance term,
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where we denote m
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and a
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cent work on the p-wave problem see Refs. [66, 67].
This conversion implies that the number of atoms and
molecules are not separately conserved, but the total,
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), is preserved. For simplicity, in
writing Eq. (1) we neglect any e↵ects of higher Bloch
bands in optical lattices [68–70]. In this respect, the
Hamiltonian (1) may be regarded as a lattice regular-
ization of the continuum models studied in Refs. [32–34];
see also Refs. [24–26]. This approach is very convenient
for numerical simulations, and enables us to investigate
the superfluid transitions where lattice e↵ects are ger-
mane. It also allows us to make contact with previous
quantum Monte Carlo (QMC) simulations [37, 38] and to
place the problem on a firmer footing. As in the original
works [32–34], we neglect the e↵ects of three body losses
and finite molecular lifetimes.

In this manuscript we use DMRG on 1D systems with
up to L = 512 sites, where we set the lattice spacing to

unity and adopt energy units where t
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= 1. We further-
more set t

m

= 1/2 throughout. We work in the canon-
ical ensemble with the total density ⇢
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/L = 2
held fixed and allow up to five atoms and five molecules
per site, corresponding to a large Hilbert space of dimen-
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ing the local Hilbert space dimension see Appendix A.
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many of the numerical results [37, 38], these additional
predictions are at variance with our recent findings [63]
which combine field theory with DMRG. This was also
suggested by our earlier studies using hardcore bosons
[39, 40]. It has recently been argued that the absence
of particle conservation hindered the interpretation of
these previous QMC simulations [71]. In this manuscript
we will further demonstrate that the use of momentum
space observables, including the zero-momentum occupa-
tion numbers and the visibility, also complicated the in-
terpretation of these earlier finite-size QMC simulations.
In order to put the problem on a more stable platform,

we present a section of the phase diagram in Fig. 1, with
parameters chosen for comparison with Ref. [37]. (Note
that our conventions di↵er from Ref. [37] by a factor of
1/2 in the interaction terms so that double occupancy
corresponds directly to U

↵↵

0 . Also, ✏
m

plays the role of
their detuning parameter, D, when ✏

a

= 0.) The phase
boundaries shown in Fig. 1 correspond to the vanishing of
the one-particle and two-particle excitation gaps, E

1g

⌘
µ
1p

(L)�µ
1h

(L) and E
2g

⌘ µ
2p

(L)�µ
2h

(L) respectively,
where the data are extrapolated to the thermodynamic
limit, L ! 1. Here

µ
np

(L) = [E
0

(L,N
T

+ n)� E
0

(L,N
T

)] /n,

µ
nh

(L) = [E
0

(L,N
T

)� E
0

(L,N
T

� n)] /n,
(3)

where E
0
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of size L and a total number N of atoms and molecules.
The phase diagram in Fig. 1 consists of three distinct
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(MC) with a one-particle gap E
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6= 0 and E
2g

= 0, and
a coupled atomic plus molecular condensate (AC+MC)
with E
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= 0. As we shall discuss more
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the di↵erent phases and to establish a detailed compar-
ison with DMRG. In Sec. V we provide a quantitative
account of the finite-size scaling of the zero-momentum
occupation numbers and the visibility. We contrast our
results with those of Refs. [37, 38]. In Sec. VI we dis-
cuss the behavior of the entanglement entropy and the
emergence of Ising criticality at the transition between
the distinct paired superfluids. We also discuss the be-
havior at the superfluid–Mott insulator transitions. In
Sec. VII we describe the Ising scaling regime, and dis-
cuss a variety of ways to extract the principal Ising char-
acteristics. This includes the Ising order parameter and
the correlation length using a finite-size scaling analysis
of the atomic and molecular correlation functions. We
also discuss the utility of a suitable ratio of the atomic
and molecular two-point functions for analyzing the Ising
quantum phase transition. We conclude in Sec. VIII and
provide further directions for research.
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FIG. 1. (color online). (a) Phase diagram of the 1D Hamilto-
nian (1) with total density ⇢T = NT/L = 2, showing a Mott
insulator (MI), a molecular condensate (MC), and a coupled
atomic plus molecular condensate (AC+MC). We use DMRG
with up to L = 128 sites and open boundary conditions. We
choose parameters ✏a = 0, Uaa/2 = Umm/2 = Uam = g = U ,
ta = 1, tm = 1/2, for comparison with Ref. [37]. The squares
and circles indicate the vanishing of the one-particle and two-
particle gaps, E1g and E2g, respectively, as L ! 1. The stars
and crosses indicate where the molecular and atomic correla-
tion exponents, ⌫m and ⌫a reach 1/4 in the MC and AC+MC
phases respectively. These values correspond to a molecular
KT transition and an atomic KT transition respectively. The
remaining panels (b), (c) and (d) show the variation of the
extrapolated gaps, E1g and E2g with L ! 1, on passing
through the phase boundaries at the corresponding points in
panel (a). In particular, we provide detailed evidence for an
Ising quantum phase transition occurring between the MC
and AC+MC phases.

fully below, the MC phase may be interpreted as a pair-
ing phase of bosons in the absence of atomic condensa-
tion. In contrast, the AC+MC phase has both molec-
ular and atomic condensation. In comparison to the
qualitative phase diagram presented in Ref. [37], inferred
from quantum Monte Carlo simulations on smaller sys-
tem sizes, we find no evidence for a single-component
atomic superfluid phase co-existing with non-condensed
molecules. This is in accord with theoretical expecta-
tions in higher dimensions, where atomic condensation
is always accompanied by molecular condensation [32–
34] provided the molecules are present; in the extreme
limit where ✏

m

! 1, occurring on the boundary of the
AC+MC phase, the molecules are explicitly excluded by
the chemical potential as shown in Fig. 2. The conclu-
sions of Ref. [37] have also come under scrutiny due to

the additional claims of superfluidity within the Mott
phase [39, 71]. Here, however, our main focus is on the
character of the transition between the distinct MC and
AC+MC superfluids. In the subsequent discussion we
will begin with symmetry arguments and field theory pre-
dictions before turning to a comparison with DMRG.

IV. FIELD THEORY DESCRIPTION

A heuristic way to understand the possibility of an
Ising quantum phase transition between the distinct MC
and AC+MC superfluids is via the generic number-phase
relationships, a ⇠ p

⇢
a

ei#a and m ⇠ p
⇢
m

ei#m , where ⇢
a

and ⇢
m

are the average atomic and molecular densities
respectively. Substituting these expressions into (1), the
Feshbach term (2) takes the form [34]

H
F

⇠ 2g⇢
a

p
⇢
m

cos(#
m

� 2#
a

). (4)

Minimizing this interaction locks the phases of the atomic
and molecular condensates according to the relationship

#
m

� 2#
a

= ±⇡, (5)

where for simplicity we assume g > 0. We see that the
phases are locked, but only modulo ⇡, and this gives
rise to the possibility of a discrete symmetry breaking Z

2

transition between Feshbach coupled superfluids. Denot-
ing #

m

⌘ #, one may recast the number-phase relation-
ships in the form [34]

m ⇠ p
⇢
m

ei#, a ⇠ � ei#/2, (6)

where the Feshbach locking is explicitly enforced and
� ⇠ p

⇢
a

e⌥i⇡/2 plays the role of an Ising degree of free-
dom. The decomposition (6) will play a central role in
the subsequent analysis and allows one to gain a handle
on the correlation functions and the principal features of
the phase diagram.
An alternative way to understand the possibility of

an Ising quantum phase transition between the MC and
AC+MC phases is via the symmetry of the Hamiltonian
(1) under U(1)⇥ Z

2

transformations:

m ! ei✓m, a ! ei(✓/2±⇡)a, (7)

where ✓ 2 R. Before discussing the problem in 1D, where
continuous symmetry breaking is absent, we first con-
sider the behavior in higher dimensions [32–34]. In this
case, the molecular condensate (MC) phase has hmi 6= 0
and hai = 0. This only breaks the U(1) symmetry,
and leaves the Z

2

symmetry, a ! �a, unbroken. This
corresponds to an Ising degree of freedom in the disor-
dered phase, coexisting with molecular superfluidity. In
contrast, the coupled atomic plus molecular condensate
(AC+MC) phase has hmi 6= 0 and hai 6= 0. This breaks
the U(1) ⇥ Z

2

symmetry completely and corresponds to
a Z

2

ordered Ising degree of freedom, coexisting with
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atomic plus molecular condensate (AC+MC). We use DMRG
with up to L = 128 sites and open boundary conditions. We
choose parameters ✏a = 0, Uaa/2 = Umm/2 = Uam = g = U ,
ta = 1, tm = 1/2, for comparison with Ref. [37]. The squares
and circles indicate the vanishing of the one-particle and two-
particle gaps, E1g and E2g, respectively, as L ! 1. The stars
and crosses indicate where the molecular and atomic correla-
tion exponents, ⌫m and ⌫a reach 1/4 in the MC and AC+MC
phases respectively. These values correspond to a molecular
KT transition and an atomic KT transition respectively. The
remaining panels (b), (c) and (d) show the variation of the
extrapolated gaps, E1g and E2g with L ! 1, on passing
through the phase boundaries at the corresponding points in
panel (a). In particular, we provide detailed evidence for an
Ising quantum phase transition occurring between the MC
and AC+MC phases.

fully below, the MC phase may be interpreted as a pair-
ing phase of bosons in the absence of atomic condensa-
tion. In contrast, the AC+MC phase has both molec-
ular and atomic condensation. In comparison to the
qualitative phase diagram presented in Ref. [37], inferred
from quantum Monte Carlo simulations on smaller sys-
tem sizes, we find no evidence for a single-component
atomic superfluid phase co-existing with non-condensed
molecules. This is in accord with theoretical expecta-
tions in higher dimensions, where atomic condensation
is always accompanied by molecular condensation [32–
34] provided the molecules are present; in the extreme
limit where ✏

m

! 1, occurring on the boundary of the
AC+MC phase, the molecules are explicitly excluded by
the chemical potential as shown in Fig. 2. The conclu-
sions of Ref. [37] have also come under scrutiny due to

the additional claims of superfluidity within the Mott
phase [39, 71]. Here, however, our main focus is on the
character of the transition between the distinct MC and
AC+MC superfluids. In the subsequent discussion we
will begin with symmetry arguments and field theory pre-
dictions before turning to a comparison with DMRG.

IV. FIELD THEORY DESCRIPTION

A heuristic way to understand the possibility of an
Ising quantum phase transition between the distinct MC
and AC+MC superfluids is via the generic number-phase
relationships, a ⇠ p

⇢
a

ei#a and m ⇠ p
⇢
m

ei#m , where ⇢
a

and ⇢
m

are the average atomic and molecular densities
respectively. Substituting these expressions into (1), the
Feshbach term (2) takes the form [34]
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). (4)

Minimizing this interaction locks the phases of the atomic
and molecular condensates according to the relationship

#
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� 2#
a

= ±⇡, (5)

where for simplicity we assume g > 0. We see that the
phases are locked, but only modulo ⇡, and this gives
rise to the possibility of a discrete symmetry breaking Z

2

transition between Feshbach coupled superfluids. Denot-
ing #
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ei#, a ⇠ � ei#/2, (6)
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� ⇠ p

⇢
a

e⌥i⇡/2 plays the role of an Ising degree of free-
dom. The decomposition (6) will play a central role in
the subsequent analysis and allows one to gain a handle
on the correlation functions and the principal features of
the phase diagram.
An alternative way to understand the possibility of

an Ising quantum phase transition between the MC and
AC+MC phases is via the symmetry of the Hamiltonian
(1) under U(1)⇥ Z

2

transformations:

m ! ei✓m, a ! ei(✓/2±⇡)a, (7)

where ✓ 2 R. Before discussing the problem in 1D, where
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sider the behavior in higher dimensions [32–34]. In this
case, the molecular condensate (MC) phase has hmi 6= 0
and hai = 0. This only breaks the U(1) symmetry,
and leaves the Z

2

symmetry, a ! �a, unbroken. This
corresponds to an Ising degree of freedom in the disor-
dered phase, coexisting with molecular superfluidity. In
contrast, the coupled atomic plus molecular condensate
(AC+MC) phase has hmi 6= 0 and hai 6= 0. This breaks
the U(1) ⇥ Z

2

symmetry completely and corresponds to
a Z

2

ordered Ising degree of freedom, coexisting with
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the di↵erent phases and to establish a detailed compar-
ison with DMRG. In Sec. V we provide a quantitative
account of the finite-size scaling of the zero-momentum
occupation numbers and the visibility. We contrast our
results with those of Refs. [37, 38]. In Sec. VI we dis-
cuss the behavior of the entanglement entropy and the
emergence of Ising criticality at the transition between
the distinct paired superfluids. We also discuss the be-
havior at the superfluid–Mott insulator transitions. In
Sec. VII we describe the Ising scaling regime, and dis-
cuss a variety of ways to extract the principal Ising char-
acteristics. This includes the Ising order parameter and
the correlation length using a finite-size scaling analysis
of the atomic and molecular correlation functions. We
also discuss the utility of a suitable ratio of the atomic
and molecular two-point functions for analyzing the Ising
quantum phase transition. We conclude in Sec. VIII and
provide further directions for research.

II. MODEL

We consider the Hamiltonian
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(1)

describing bosons, b
i↵

, hopping on a 1D lattice with sites
i, where ↵ = a,m labels atoms and molecules [35–40].
Here, ✏

↵

are on-site potentials, t
↵

are nearest neighbor
hopping parameters, and U

↵↵

0 are interactions. We as-
sume that molecule formation is described by the s-wave
Feshbach resonance term,

H
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(m†
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i
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+H.c.), (2)

where we denote m
i

⌘ b
im

and a
i

⌘ b
ia

; for re-
cent work on the p-wave problem see Refs. [66, 67].
This conversion implies that the number of atoms and
molecules are not separately conserved, but the total,
N

T

⌘ P
i

(n
ia

+ 2n
im

), is preserved. For simplicity, in
writing Eq. (1) we neglect any e↵ects of higher Bloch
bands in optical lattices [68–70]. In this respect, the
Hamiltonian (1) may be regarded as a lattice regular-
ization of the continuum models studied in Refs. [32–34];
see also Refs. [24–26]. This approach is very convenient
for numerical simulations, and enables us to investigate
the superfluid transitions where lattice e↵ects are ger-
mane. It also allows us to make contact with previous
quantum Monte Carlo (QMC) simulations [37, 38] and to
place the problem on a firmer footing. As in the original
works [32–34], we neglect the e↵ects of three body losses
and finite molecular lifetimes.

In this manuscript we use DMRG on 1D systems with
up to L = 512 sites, where we set the lattice spacing to

unity and adopt energy units where t
a

= 1. We further-
more set t

m

= 1/2 throughout. We work in the canon-
ical ensemble with the total density ⇢

T

= N
T

/L = 2
held fixed and allow up to five atoms and five molecules
per site, corresponding to a large Hilbert space of dimen-
sion (6 ⇥ 6)L; for a discussion of the e↵ects of chang-
ing the local Hilbert space dimension see Appendix A.
With open (periodic) boundary conditions we retain up
to m

⇢

= 2400 (m
⇢

= 3000) states in the density matrix
in order to ensure that the discarded weight is less than
1⇥ 10�10 (1⇥ 10�8).

III. PHASE DIAGRAM

As we discussed in Ref. [63], the qualitative phase di-
agram of the 1D lattice Hamiltonian (1) was previously
considered using QMC simulations [37, 38]. In addition
to delineating the Mott insulating and superfluid phase
boundaries, this work led to intriguing predictions of su-
perfluidity within the Mott phase, and an additional su-
perfluid phase not present in mean field theory [32–36].
Although we find very good quantitative agreement with
many of the numerical results [37, 38], these additional
predictions are at variance with our recent findings [63]
which combine field theory with DMRG. This was also
suggested by our earlier studies using hardcore bosons
[39, 40]. It has recently been argued that the absence
of particle conservation hindered the interpretation of
these previous QMC simulations [71]. In this manuscript
we will further demonstrate that the use of momentum
space observables, including the zero-momentum occupa-
tion numbers and the visibility, also complicated the in-
terpretation of these earlier finite-size QMC simulations.
In order to put the problem on a more stable platform,

we present a section of the phase diagram in Fig. 1, with
parameters chosen for comparison with Ref. [37]. (Note
that our conventions di↵er from Ref. [37] by a factor of
1/2 in the interaction terms so that double occupancy
corresponds directly to U

↵↵

0 . Also, ✏
m

plays the role of
their detuning parameter, D, when ✏

a

= 0.) The phase
boundaries shown in Fig. 1 correspond to the vanishing of
the one-particle and two-particle excitation gaps, E
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⌘
µ
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(L) and E
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⌘ µ
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(L) respectively,
where the data are extrapolated to the thermodynamic
limit, L ! 1. Here
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where E
0

(L,N) is the ground state energy for a system
of size L and a total number N of atoms and molecules.
The phase diagram in Fig. 1 consists of three distinct
phases: a Mott insulator (MI) with gaps for both exci-
tations, E

1g

6= 0 and E
2g

6= 0, a molecular condensate
(MC) with a one-particle gap E
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6= 0 and E
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= 0, and
a coupled atomic plus molecular condensate (AC+MC)
with E
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= 0 and E
2g

= 0. As we shall discuss more
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results with those of Refs. [37, 38]. In Sec. VI we dis-
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Sec. VII we describe the Ising scaling regime, and dis-
cuss a variety of ways to extract the principal Ising char-
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the correlation length using a finite-size scaling analysis
of the atomic and molecular correlation functions. We
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quantum phase transition. We conclude in Sec. VIII and
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FIG. 1. (color online). (a) Phase diagram of the 1D Hamilto-
nian (1) with total density ⇢T = NT/L = 2, showing a Mott
insulator (MI), a molecular condensate (MC), and a coupled
atomic plus molecular condensate (AC+MC). We use DMRG
with up to L = 128 sites and open boundary conditions. We
choose parameters ✏a = 0, Uaa/2 = Umm/2 = Uam = g = U ,
ta = 1, tm = 1/2, for comparison with Ref. [37]. The squares
and circles indicate the vanishing of the one-particle and two-
particle gaps, E1g and E2g, respectively, as L ! 1. The stars
and crosses indicate where the molecular and atomic correla-
tion exponents, ⌫m and ⌫a reach 1/4 in the MC and AC+MC
phases respectively. These values correspond to a molecular
KT transition and an atomic KT transition respectively. The
remaining panels (b), (c) and (d) show the variation of the
extrapolated gaps, E1g and E2g with L ! 1, on passing
through the phase boundaries at the corresponding points in
panel (a). In particular, we provide detailed evidence for an
Ising quantum phase transition occurring between the MC
and AC+MC phases.

fully below, the MC phase may be interpreted as a pair-
ing phase of bosons in the absence of atomic condensa-
tion. In contrast, the AC+MC phase has both molec-
ular and atomic condensation. In comparison to the
qualitative phase diagram presented in Ref. [37], inferred
from quantum Monte Carlo simulations on smaller sys-
tem sizes, we find no evidence for a single-component
atomic superfluid phase co-existing with non-condensed
molecules. This is in accord with theoretical expecta-
tions in higher dimensions, where atomic condensation
is always accompanied by molecular condensation [32–
34] provided the molecules are present; in the extreme
limit where ✏

m

! 1, occurring on the boundary of the
AC+MC phase, the molecules are explicitly excluded by
the chemical potential as shown in Fig. 2. The conclu-
sions of Ref. [37] have also come under scrutiny due to

the additional claims of superfluidity within the Mott
phase [39, 71]. Here, however, our main focus is on the
character of the transition between the distinct MC and
AC+MC superfluids. In the subsequent discussion we
will begin with symmetry arguments and field theory pre-
dictions before turning to a comparison with DMRG.
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rise to the possibility of a discrete symmetry breaking Z
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on the correlation functions and the principal features of
the phase diagram.
An alternative way to understand the possibility of

an Ising quantum phase transition between the MC and
AC+MC phases is via the symmetry of the Hamiltonian
(1) under U(1)⇥ Z

2

transformations:

m ! ei✓m, a ! ei(✓/2±⇡)a, (7)

where ✓ 2 R. Before discussing the problem in 1D, where
continuous symmetry breaking is absent, we first con-
sider the behavior in higher dimensions [32–34]. In this
case, the molecular condensate (MC) phase has hmi 6= 0
and hai = 0. This only breaks the U(1) symmetry,
and leaves the Z

2

symmetry, a ! �a, unbroken. This
corresponds to an Ising degree of freedom in the disor-
dered phase, coexisting with molecular superfluidity. In
contrast, the coupled atomic plus molecular condensate
(AC+MC) phase has hmi 6= 0 and hai 6= 0. This breaks
the U(1) ⇥ Z

2

symmetry completely and corresponds to
a Z

2

ordered Ising degree of freedom, coexisting with

Transition between two c=1 CFTs! 
What is the critical line ???
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FIG. 1. (color online). (a) Phase diagram of the 1D Hamilto-
nian (1) with total density ⇢T = NT/L = 2, showing a Mott
insulator (MI), a molecular condensate (MC), and a coupled
atomic plus molecular condensate (AC+MC). We use DMRG
with up to L = 128 sites and open boundary conditions. We
choose parameters ✏a = 0, Uaa/2 = Umm/2 = Uam = g = U ,
ta = 1, tm = 1/2, for comparison with Ref. [37]. The squares
and circles indicate the vanishing of the one-particle and two-
particle gaps, E1g and E2g, respectively, as L ! 1. The stars
and crosses indicate where the molecular and atomic correla-
tion exponents, ⌫m and ⌫a reach 1/4 in the MC and AC+MC
phases respectively. These values correspond to a molecular
KT transition and an atomic KT transition respectively. The
remaining panels (b), (c) and (d) show the variation of the
extrapolated gaps, E1g and E2g with L ! 1, on passing
through the phase boundaries at the corresponding points in
panel (a). In particular, we provide detailed evidence for an
Ising quantum phase transition occurring between the MC
and AC+MC phases.

fully below, the MC phase may be interpreted as a pair-
ing phase of bosons in the absence of atomic condensa-
tion. In contrast, the AC+MC phase has both molec-
ular and atomic condensation. In comparison to the
qualitative phase diagram presented in Ref. [37], inferred
from quantum Monte Carlo simulations on smaller sys-
tem sizes, we find no evidence for a single-component
atomic superfluid phase co-existing with non-condensed
molecules. This is in accord with theoretical expecta-
tions in higher dimensions, where atomic condensation
is always accompanied by molecular condensation [32–
34] provided the molecules are present; in the extreme
limit where ✏

m

! 1, occurring on the boundary of the
AC+MC phase, the molecules are explicitly excluded by
the chemical potential as shown in Fig. 2. The conclu-
sions of Ref. [37] have also come under scrutiny due to

the additional claims of superfluidity within the Mott
phase [39, 71]. Here, however, our main focus is on the
character of the transition between the distinct MC and
AC+MC superfluids. In the subsequent discussion we
will begin with symmetry arguments and field theory pre-
dictions before turning to a comparison with DMRG.

IV. FIELD THEORY DESCRIPTION

A heuristic way to understand the possibility of an
Ising quantum phase transition between the distinct MC
and AC+MC superfluids is via the generic number-phase
relationships, a ⇠ p

⇢
a

ei#a and m ⇠ p
⇢
m

ei#m , where ⇢
a

and ⇢
m

are the average atomic and molecular densities
respectively. Substituting these expressions into (1), the
Feshbach term (2) takes the form [34]

H
F

⇠ 2g⇢
a

p
⇢
m

cos(#
m

� 2#
a

). (4)

Minimizing this interaction locks the phases of the atomic
and molecular condensates according to the relationship

#
m

� 2#
a

= ±⇡, (5)

where for simplicity we assume g > 0. We see that the
phases are locked, but only modulo ⇡, and this gives
rise to the possibility of a discrete symmetry breaking Z

2

transition between Feshbach coupled superfluids. Denot-
ing #

m

⌘ #, one may recast the number-phase relation-
ships in the form [34]

m ⇠ p
⇢
m

ei#, a ⇠ � ei#/2, (6)

where the Feshbach locking is explicitly enforced and
� ⇠ p

⇢
a

e⌥i⇡/2 plays the role of an Ising degree of free-
dom. The decomposition (6) will play a central role in
the subsequent analysis and allows one to gain a handle
on the correlation functions and the principal features of
the phase diagram.
An alternative way to understand the possibility of

an Ising quantum phase transition between the MC and
AC+MC phases is via the symmetry of the Hamiltonian
(1) under U(1)⇥ Z

2

transformations:

m ! ei✓m, a ! ei(✓/2±⇡)a, (7)

where ✓ 2 R. Before discussing the problem in 1D, where
continuous symmetry breaking is absent, we first con-
sider the behavior in higher dimensions [32–34]. In this
case, the molecular condensate (MC) phase has hmi 6= 0
and hai = 0. This only breaks the U(1) symmetry,
and leaves the Z

2

symmetry, a ! �a, unbroken. This
corresponds to an Ising degree of freedom in the disor-
dered phase, coexisting with molecular superfluidity. In
contrast, the coupled atomic plus molecular condensate
(AC+MC) phase has hmi 6= 0 and hai 6= 0. This breaks
the U(1) ⇥ Z

2

symmetry completely and corresponds to
a Z

2

ordered Ising degree of freedom, coexisting with
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FIG. 13. (a) Atomic and molecular visibilities Va (circles) and
Vm (crosses) within the AC+MC phase for ✏m = �2 obtained
by DMRG with up to L = 64 and periodic boundaries. We use
the conformal extrapolation procedure described in the text
in order to obtain the asymptotic results as L ! 1. Both
Va and Vm are unity right up to the MI boundary, indicating
the presence of both atomic and molecular superfluidity. (b)
Naive polynomial extrapolation erroneously suggests that the
molecular visibility is less than unity in the AC+MC phase.

VI. ENTANGLEMENT ENTROPY

Having established good agreement between field the-
ory and DMRG for the MC and AC+MC phases, let
us now examine the quantum phase transition between
them. A key diagnostic in this 1D setting is the central
charge, c, which is a measure of the number of critical
degrees of freedom. This may be obtained from the en-
tanglement entropy. For a block of length l in a periodic
system of length L, the von Neumann entropy is given
by S

L

(l) = �Tr
l

(⇢
l

ln ⇢
l

), where ⇢
l

= Tr
L�l

(⇢) is the
reduced density matrix. One obtains [87, 88]

S
L

(l) =
c

3
ln


L

⇡
sin

✓
⇡l

L

◆�
+ s

1

+ . . . , (27)

where s
1

is a non-universal constant and where the cor-
rections are small when the chord length is large [89–
95]. As may be seen in Fig. 14(a), the numerically ex-
tracted central charge of the MC phase yields c = 1, as
one would expect for a single free boson, with coexist-
ing gapped degrees of freedom; the adjacent panel shows
the same results plotted against the conformal distance
l̃ ⌘ ln[(L/⇡) sin(⇡l/L)] in order to yield a linear slope of
c/3. It may be seen from Fig. 14(c) that the AC+MC
phase also has c = 1. Note that it is not c = 2 as would
be the case for two independent Luttinger liquids. This

2

3

S
L
(l
)
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S
L
(l
)
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L
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(c) AC+MC (✏m=�4)

(a) MC (✏m=�3.5)

(b) QPT

c ⇡ 1

c ⇡ 3/2

c ⇡ 1

FIG. 14. Entanglement entropy SL(l) obtained by DMRG
with L = 64 and periodic boundaries. We consider horizontal
scans through Fig. 1 with U = 0.5 and U = 0.7. (a) Within
the MC phase with ✏m = �3.5 we find c ⇡ 1 corresponding to
a gapless superfluid. (b) In the vicinity of the MC to AC+MC
quantum phase transition we find c ⇡ 3/2. This corresponds
to the presence of additional gapless Ising degrees of freedom
coexisting with superfluidity. (c) Within the AC+MC phase
with ✏m = �4 we find c ⇡ 1 corresponding to an e↵ective free
boson. The panels on the right correspond to the same data
as on the left, but are plotted against the conformal distance
l̃ ⌘ ln[(L/⇡) sin(⇡l/L)] in order to yield a linear plot with
slope c/3. The o↵set between the di↵erent curves within each
panel is due to the non-universal contribution in Eq. (27).

reflects the coupled nature of the atomic and molecu-
lar condensates in the AC+MC phase, with additional
gapped Ising degrees of freedom; the Feshbach term is
relevant and drives the Z

2

sector massive. Close to the
MC to AC+MC transition, where the anticipated Ising
gap closes, one expects the central charge to increase to
c = 3/2, due to additional critical Ising degrees of free-
dom with c = 1/2. This is confirmed by our DMRG
simulations in Fig. 14(b). Further support for this Z

2

transition is obtained from the di↵erence [96],

�S(L) ⌘ S
L

(L/2)� S
L/2

(L/4) =
c

3
ln(2) + . . . , (28)

as a function of ✏
m

. For a given system size this displays a
peak, whose location coincides with the MC to AC+MC

von Neumann entropies:

Ising transition on top of a 
Luttinger Liquid !



 2. Excited State Entanglement in 1+1 dim CFTs

Entanglement entropy

Area Law
SA∝ Area separating A and B

If the Hamiltonian has a gap

A

B [Srednicki ’93]

If |ψ〉 is the ground state of a local Hamiltonian

B BA

�

In a 1+1 D CFT Holzhey, Larsen, Wilczek ’94

This is the most effective way to determine the central charge

SA = c ln �  3
_

3

Alcaraz, Berganza& Sierra ’11

But now consider the system in an excited state:

ground 
state

O(z, z̄) a primary field

O(0, 0)|0i

evaluated on
a cylinder



CFT results are useful for understanding critical properties
of lattice models with quantum phase transitions.

But there are interesting caveats....



3. 1D Hubbard model (periodic bcs)

1D Hubbard Model

Crucial Paradigm for Mott Metal-Insulator transition at half-filling

Low-energy theory below half-filling: two c=1 Luttinger liquids

spin/charge 
velocities

Bose 
fields

dual 
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Threshold Singularities in the One Dimensional Hubbard Model

Fabian H.L. Essler1

1 The Rudolf Peierls Centre for Theoretical Physics, Oxford University, Oxford OX1 3NP, UK

We consider excitations with the quantum numbers of a hole in the one dimensional Hubbard
model below half-filling. We calculate the finite-size corrections to the energy. The results are then
used to determine threshold singularities in the single-particle Green’s function for commensurate
fillings. We present the analogous results for the Yang-Gaudin model (electron gas with δ-function
interactions).

I. INTRODUCTION

The Hubbard model constitutes a key paradigm for strong correlation effects in one dimensional (1D) electron
systems1. Its Hamiltonian is

H = −t
∑

j,σ

c†j,σcj+1,σ + c†j+1,σcj,σ + U
∑

j

nj,↑ nj,↓ − µ
∑

j

nj −B
∑

j

[nj,↑ − nj,↓] , (1)

where nj,σ = c†j,σcj,σ and nj = nj,↑ + nj,↓. In the following discussion the magnetic field B will be set to zero, but we
will reinstate it in the calculations in sections III A-V. The Hubbard model is solvable by Bethe Ansatz2 and many
exact results are available in the literature1. Of particular interest in view of experimental applications are dynamical
response functions such as the single-particle spectral function

A(ω, q) = −
1

π
Im Gret(ω, q),

Gret(ω, q) = −i

∫ ∞

0
dt eiωt

∑

l

e−iqla0 〈0|{cj+l,σ(t), c†j,σ}|0〉. (2)

The spectral function is measured in angle-resolved photoemission experiments. Such measurements on the quasi-1D
organic conductor TTF-TCNQ have been interprested in terms of A(ω, q) of the 1D Hubbard model3,4. While high
quality numerical results are available from dynamical density matrix renormalization group computations4,5, it is
so far not possible to calculate (2) analytically from the exact solution. However, using a field theory approach it
is possible to determine low-energy properties exactly. In particular, the singularity as a function of ω at the Fermi
wave number can be obtained using Luttinger liquid theory6. The low-energy physics of the Hubbard model in zero
magnetic field is described by a spinful Luttinger liquid with Hamiltonian H = Hc +Hs, where1,7

H =
∑

α=c,s

vα
2π

∫
dx

[
1

Kα

(
∂Φα

∂x

)2

+Kα

(
∂Θα

∂x

)2
]

+ irrelevant operators. (3)

Here Ks = 1 (we are concerned with the B = 0 case for the time being) and the spin and charge velocities vc,s as well
as the Luttinger parameter Kc are known functions of the density and interaction strength1. The Bose fields Φα and
the dual fields Θα fulfil the commutation relations

[
Φα(x),

∂Θβ(y)

∂y

]
= iπδαβδ(x− y). (4)

The spectrum of low-lying excitations (relative to the ground state) in a large but finite system of size L is given
by1,23

∆E =
2πvc
L

[
(∆Nc)2

4ξ2
+ ξ2

(
Dc +

Ds

2

)2
+N+

c +N−
c

]
+

2πvs
L

[(
∆Ns − ∆Nc

2

)2

2
+

D2
s

2
+N+

s +N−
s

]

,

∆P =
2π

L

[
∆NcDc +∆NsDs +N+

c −N−
c +N+

s −N−
s

]
+ 2kF (2Dc +Ds) , (5)

where ∆Nα, Dα and N±
α are integer or half-odd integer “quantum numbers” subject to the selection rules

N±
α ∈ N0 , ∆Nα ∈ Z , Dc =

∆Nc +∆Ns

2
mod 1 , Ds =

∆Nc

2
mod 1. (6)



3. 1D Hubbard model (periodic bcs)

1D Hubbard Model

Crucial Paradigm for Mott Metal-Insulator transition at half-filling

Low-energy theory below half-filling: two c=1 Luttinger liquids

• Different velocities (not Lorentz invariant)
• Local operators particular combinations of spin/charge fields
• irrelevant perturbations (spin and charge coupled)



with c=2?for ground state: 



with c=2?

U=t
quarter filling

scaling collapse on two curves: L=0 mod 8 and L=4 mod 8

???

for ground state: 

x=ℓ/L



Essler, Korepin, Schoutens ’91

Lieb&Wu ’68L=4 mod 8: unique ground state from Bethe Ansatz

entropy agrees well with CFT prediction

L=0 mod 8:

ground state degenerate S=1 multiplet.

entropy disagrees with CFT prediction



L=4 mod 8:

L=0 mod 8:

To see what is going on, consider U→0 limit:

GS is a symmetrically filled Fermi sea

N↑=N↓= odd=2n+1

N↑=N↓= even=2n U→0 GS is a superposition of 

asymmetrically filled Fermi seas

•••••••••
•••••••••

↑
↓

0

•••••••• 
••••••••

0

 ••••••••
••••••••

0

+

|2n+ 1iFS =
nY

m=�n

c†"(pm)c†#(pm)|0i

c†"(kF )c
†
#(�kF ) + c†#(kF )c

†
"(�kF )p

2
|2n� 1iFS



L=0 mod 8: N↑=N↓= even U→0 GS is a superposition of 

asymmetrically filled Fermi seas
•••••••• 
••••••••

0

 ••••••••
••••••••

0

Intuitively higher entropy, because P↑-P↓ not fixed, but can take

2 values.

+



4. CFT Approach to Shell-Filling Effects

Bethe Ansatz & Bosonization:

Chiral Fields:

Mode expansions:

Zero modes:

x±=x±vat



Difference between L=4 mod 8 and L=0 mod 8 is in
quantization conditions for Qa, Qa

_



eigenvalues of Qa mσ, mσ 

integers

_

Kc Luttinger parameter (compactification radius)

qc =
X

�=",#

K + 1p
8K

m� +
K � 1p

8K
m̄�

q̄c =
X

�=",#

K � 1p
8K

m� +
K + 1p

8K
m̄�

qs =
m" �m#p

2
q̄s =

m̄" � m̄#p
2

L=4 mod 8:

notations: annihilated by
zero-mode eigenvalues

Ground state: |0,0,0,0⟩ (CFT vacuum)



mσ → mσ+1/2

mσ → mσ+1/2
_L=0 mod 8: _

Sz=0 ground states:

N.B. Degeneracy between spin singlet and triplet is an artifact of 
CFT limit: broken by marginally irrelevant perturbation in the
Hubbard model.



Can write our state of interest as

Nonetheless can apply method of Alcaraz, Berganza & Sierra 
(PRL ’11) to determine Renyi entropies.

Not an excited state in our compact boson theory.



1. Renyi Entropies

2. von Neumann Entropy

c=2

5. Results

by “analytic continuation” n→1



Comparison with numerics (DMRG)

for U=0.3t

regime where CFT is 
expected to hold

good!



Comparison with numerics (DMRG)

But agreement gets worse for larger U! ???

Hubbard model is perturbed CFT and
leading operator is only marginally irrelevant.
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CFT Perturbation

Difficult problem (RG improved PT on multi-sheeted Riemann 
surface).

g flows to zero for ℓ→∞, but DMRG data only for “small” ℓ

cf Cardy&Calabrese ’10 (ground state)
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CFT Perturbation

Idea: change lattice Hamiltonian to make bare coupling g small

increasing V2 decreases g (difficult to make g=0 because of KT 
transition when g changes sign)
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Agreement improves !!!



6. Conclusions

• Have found a new O(1) effect for ground state entanglement 
entropies.
• Effect is actually rather general. Will occur in multi-species 
theories in any dimension etc.

• Important for interpreting numerical studies.
• For 1+1 dim quantum critical models we have developed a CFT 
approach.

• Using results of Alcaraz et al obtained exact scaling functions.

• Observed very strong effects of marginally irrelevant 
perturbation. (cf corrections to excited state energies)




