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Dynamics of an 1solated system

Theoretical challenges

What are the laws that rule the behaviour of a quantum
system that is put in a non-equilibrium state?

* Dynamics and out of equilibrium properties of classical systems have
been extensively studied

* For a (closed) quantum systems this is still an open problem
towards equilibrium: thermalization?
conserved quantities:
(generalized) Gibbs ensemble? integrable vs. non-integrable?

trapping in metastable (topological) states?

A. Polkovnikov, K. Sengupta, A. Silva, M. Vengalattore, Rev. Mod. Phys. 83, 863 (2011)
M.A. Cazalilla, M. Rigol (ed.), Focus on dynamics ... , New Journal of Physics 12 (2010)



Experiments (with cold atoms)

Nature 440, 900 (2006)

A quantum Newton's cradle

Toshiya Kinoshita', Trevor Wenger' & David S. Weiss'

.. Here we report the preparation of out-of-equili-
brium arrays of trapped one-dimensional (1D) Bose gases, each
containing from 40 to 250 ®’Rb atoms, which do not noticeably
equilibrate even after thousands of collisions. Our results are
probably explainable by the well-known fact that a homogeneous
1D Bose gas with point-like collisional interactions is integrable.

Quantum dynamics of impurities in a one-dimensional Bose gas

J. Catani,'* G. Lamporesi,'* D. Naik,! M. Gring,” M. Inguscio,"* F. Minardi,">" A. Kantian,* and T. Giamarchi*
25 s ———————

Using a species-selective dipole potential, we create
initially localized impurities and investigate their
interactions with a majority species of bosonic atoms
in a one-dimensional configuration during expansion.
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slé 9|+ Phys. Rev. A 85, 023623 (2012)
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Experiments (with cold atoms)

Expansion Dynamics of Interacting Bosons in H(_)mogeneous Lattices in One and Two Dimensions

J.P. Ronzheimer,"? M. Schreiber,' S. Braun,' S. S. Hodgman,'? S. Langer,** I. P. McCulloch,’
F. Heidrich-Meisner,”° I. Bloch,'? and U. Schneider'*?

We experimentally and numerically investigate the
expansion of initially localized ultracold bosons in
homogeneous one- and two-dimensional optical
lattices. We find that both dimensionality and
interaction strength crucially influence these
nonequilibrium dynamics.

Phys. Rev. Lett. 110, 205301 (2013)

Spontaneous creation of Kibble-Zurek solitons in
a Bose-Einstein condensate

Giacomo Lamporesi, Simone Donadello, Simone Serafini, Franco Dalfovo and Gabriele Ferrari*

When a system crosses a second-order phase transition on a finite timescale, spontaneous
sym- metry breaking can cause the development of domains with independent order
parameters, which then grow and approach each other creating boundary defects. This is
known as Kibble-Zurek mechanism. ... Here we report on the spontaneous creation of
solitons in Bose-Einstein condensates via the Kibble-Zurek mechanism. ...

Nature Physics, 656, Vol. 9, 2013



Dynamics across a QP

Theoretical set-up

universal behavior of dynamical physical quantities
(observables, correlation functions, ...) while crossing a QPT
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Kibble-Zurek mechanism

Formation of ordered domains and defects
while crossing a PT on a finite time-scale

originally introduced in cosmology
initially for (classical) PT in temperature

generalized to QPT

Rate of defect
formation

: (g*)—d o vdl//(zu—l—l)



QPT’s and Entanglement

+ ground states of many body systems are highly entangled
+ entanglement measures are able to detect phase transitions

+ entanglement has a universal behaviour close to a QPT

Bipartite entanglement

|¢GS> = = ‘¢GS><¢G5| A of size
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Von Neumann Entropy & Entanglement Spectrum

Subsystem A represents a quantum system in the B environment
& the reduced density matrix looks as that of a thermal state

von Neumman entropy  Syny = — Z We, log w,
(87

% Schmidt gap Asg=w; —w>




The Model

Ising chain in transverse field
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from a paramagnetic (h>>1) phase ‘% cet = > AUB

to a ferromagnetic (h<<1) phase H\ e T> AUB



Finite velocity ramping of the field

B
h(t) — hz —+ sgn(hf - hz);

Analytical calculations

Mapping into a fermionic Hamiltonian, via a Jordan-Wigner transformation

1= Lh
H = —5 ]z::l |:(C;+1Cj -+ Cj_|_1Cj —+ hC) — 2thCJi| T 7
Diagonalizing via Fourier transform i = Z Lo (biﬂbm o 5)

and Bogolyubov transformation




RESULTS: the von-Neumann entropy
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four state dynamics where only first four eigenvalues are relevant

RESULTS: the entanglement spectrum
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WHY: hints from perturbation theory

for h > 1 ‘O>AuB — _>>AUB

1
for h > 1 (G5 = []0>AU3+EZ|—>"'TT"'_>>AuB

Tracing out B, there are 4 kinds of states contributing to
the density matrix of A (half chain, PBC'’s):

e ), W=

4= 1o, L/2)4 =1 =21

(degenerate)
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Entanglement spectrum in the QUENCH regime
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Entanglement spectrum in the ADIABATIC regime
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Entanglement spectrum in the INTERMEDIATE regime
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Universality: Kibble-Zurek physics

For a finite velocity, the evolution can be divided into three parts:

- a first adiabatic one, where the wave function of the system
coincides with the ground state of H(t);

- a second impulsive, where the wave function of the system is
practically frozen, due to the large relaxation time close to the
critical point;

- a third adiabatic one, as the system is driven away from the critical
point.

Entanglement entropy must have a universal behaviour:

g S _log T+ const
— og T const.
6(1 + zv) 2
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Universality: Schmidt gap

| Agrecment with theoretical
predictions:

2%

Ag =y — Wy~ 7 =2
(G. De Chiara et al., PRL 109,
237208 (2012) )

Oscillatory behavior
(F. Pollmann et al., PR E81,
0201101 8 (2010) )
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Non—analiticity emerging
from level crossing
(G. Torlai et al., arXiv:1311.5509)




OUTLOOKS

* Studied the dynamics across a Quantum Phase Transition via
entanglement entropy & entanglement spectrum

A case study: the Ising model in magnetic field

* Analytical + t-DMRG (F.Ortolani, C. Degli Esposti Boschi):
+ fully interacting (still integrable models): e.g. XXZ, XYZ chain
- higher symmetry models: e.g. SU(2) or SU(3) chains
- disordered systems (with or without breaking of integrability)

- spin chains & Bose-Hubbard models with bound states



